Name:

- 1. Which type of electromagnetic radiation has the shortest wavelength?
 - A) red light
 - B) x rays
 - C) microwaves
 - D) gamma rays
 - E) blue light
- 2. What is the wavelength of a photon having a frequency of 4.50×10^{14} Hz? ($c = 3.00 \times 10^8$ m/s)
 - A) 667 nm
 - B) 1.50×10^{-3} nm
 - C) 4.42×10^{-31} nm
 - D) 0.0895 nm
 - E) 2.98×10^{-10} nm
- 3. What is the energy of a photon of electromagnetic radiation with a wavelength of 877.4 nm? ($c = 3.00 \times 10^8 \text{ m/s}, h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$)
 - A) $2.16 \times 10^{-19} \text{ J}$
 - B) 5.82 x 10⁻⁴⁰ J
 - C) 2.16 x 10⁻²⁸ J
 - D) $3.42 \times 10^{14} \text{ J}$
 - E) 1.94 x 10⁻³⁹ J
- 4. Which of the following is/are correct postulates of Bohr's theory of the hydrogen atom?
 - 1. The energy of an electron in an atom is quantized (i.e. only specific energy values are possible).
 - 2. The principal quantum number (n), specifies each unique energy level.
 - 3. An electron transition from a lower energy level to a higher energy level results in an emission of a photon of light.
 - A) 1 only
 - B) 2 only
 - C) 3 only
 - D) 1 and 2
 - E) 1, 2, and 3
- 5. List all the orbitals when n = 4.
- 6. Give the formula that relates the number of possible values of m_l to the value of l.

7. Which of the following subshells cannot exist: (a) 1p; (b) 4f; (c) 2d; (d) 5p; (e) 3f? Why not?

8. List all possible values of m_l for each of the indicated subshells. What role does the principal quantum number n play in determining your answer?

Subshell	Values of m_l
(a) 4s	
(b) 2p	
(c) 3d	
(d) 5f	

- 9. Which of the following sets of quantum numbers (n, l, ml, ms) refers to a 3d orbital?
 - A) 2 1 0 + 1/2B) 5 4 3 + 1/2C) 4 2 1 - 1/2D) 4 3 1 - 1/2E) 3 2 1 - 1/2

10. An orbital with the quantum numbers: n = 3, l = 0, $m_l = 0$, may be found in which subshell?

- A) 3f
- B) 3d
- C) 3p
- D) 3g
- E) 3s