Chapter 2 Nomenclature

Dr. Sapna Gupta

Introduction

- Compounds are elements combined in different proportions.
- There are two main types of combinations (bonding) as shown below.
- Nomenclature is of three kinds two different types for ionic one for main group and one for transition metals; and one type for covalent.

Molecules and Formula Units

- Covalent compounds are called molecules.
- Formula unit is the smallest ratio of cations to anions in an ionic compound. In solid state ionic compounds a specific number of ions are associated with each other. These form the crystal structure.
- There are seven diatomic gases/molecules whose names are the same as the element names:

 H_2 , O_2 , N_2 , F_2 , Cl_2 , Br_2 and I_2 .

Representing Combinations

- <u>Empirical Formula</u> lowest ratio of combination of elements e.g. H_2O , CH_2O .
- <u>Molecular Formula</u> actual ratio of elements in a compound. For ionic compounds the empirical formula is also the molecular formula (formula unit). For covalent compounds sometimes the empirical formula can be multiplied by an integer to give the molecular formula.

E.g. $(CH_2O) \ge 6 = C_6H_{12}O_6$ (glucose)

- <u>Structural Formula</u> 3D representation of the ionic or covalent compound.
- Example: H_2O_2 is molecular formula, HO is the empirical formula of that compound.

Ionic Compounds

- Formed from metals and non metals.
- Metals lose electrons to form cations.
- Non metals lose electrons to form anions.
- Electrons transfer from metals to non metals.
- Final unit is electrically neutral.

Metals lose e ⁻	Cation formed E.g.	Non Metals gain e [.]	Anion formed E.g.
Group I 1e ⁻ lost	Li+, Na+	Group V 3e ⁻ gain	N ³⁻ , P ³⁻
Group II 2e ⁻ lost	Mg ²⁺ , Ca ²⁺	Group VI 2e ⁻ gain	0 ²⁻ , S ²⁻
Group III 3e ⁻ lost	Al ³⁺	Group VII 1e ⁻ gain	Cl ⁻ , Br ⁻

Naming Ionic Compounds – Main Group

- Naming cations
 - Name the element and add the word "ion"
 - Example: Na⁺, sodium ion
- Naming Anions
 - Name the element and modify the ending to "-ide"
 - Example: Cl⁻(chloride), O²⁻ (oxide)
- <u>Naming ionic compounds</u>: leave the name of the metal as is, change the name of the non metal to element ending with *-ide*. For example, sodium chloride, calcium oxide.
- <u>Note</u>: The name does not say anything about the ratio of the elements. This is because there is only one combination possible for main group elements .
- There are two exceptions –

Pb in Group IV has two ions Pb²⁺ and Pb⁴⁺; and Tl in Group III has two ions Tl⁺ and Tl³⁺

Forming Compounds (Formula Units)

Compound formed is electrically neutral so the sum of the charges on the cation(s) and anion(s) in each formula unit must be zero. The criscross method is given below to easily form compounds.

Naming Ionic Compounds – Transition Metals

- Cations from transition metals with some exceptions
 - Name element
 - Indicate charge of metal with Roman numeral
 - Add word "ion"
 - Example: Cu²⁺, copper(II) ion, Fe³⁺, Iron (III) ion

Example: form the compounds between the following ions.

More on Ions

- Main group elements give and take definite number of electrons.
- Transition metals however give a different number of electrons. There is no point memorizing the charges; it is better to look at the formula unit or name to figure out the charge (valency) on the metal.
- The table below gives ALL the cations and anions you need from PT.

Polyatomic Ions

- These are ions (cations and anions) formed from combination of non metals.
- Most polyatomic ions are anions meaning they have excess electrons. (*Where are these excess electrons coming from?* From the metals they combine with).

Positive Polyatomic Cations

H₃O⁺ hydronium ion (exists only in acidic solutions) NH₄⁺ ammonium ion (formed from NH₃: ammonia) <u>Simple Polyatomic Anions</u>

OH⁻ hydroxide

CN⁻ cyanide

Polyatomic Ions Containing Oxygen

(all end in "ate" or "ite")

Formula	Name
CO ₃ ²⁻	Carbonate
HCO ₃ -	Hydrogen carbonate
SO ₄ ²⁻	Sulfate
HSO ₄ -	Hydrogen sulfate
SO ₃ ²⁻	Sulfite
HSO ₃ -	Hydrogen sulfite
NO ₃ -	Nitrate
NO ₂ -	Nitrite
PO ₄ ³⁻	Phosphate
HPO ₄ ²⁻	Hydrogen phosphate
H ₂ PO ₄ -	Dihydrogen phosphate
$C_2H_3O_2^-$	Acetate
CH ₃ COO-	

Formula	Name
Cr04 ²⁻	Chromate
$Cr_2O_7^{2}$	Dichromate
MnO ₄ -	Permanganate
SCN ⁻	Thiocyanate
$S_2O_3^{2-}$	Thiosulfate
ClO ⁻	Hypochlorite
ClO ₂ -	Chlorite
ClO_3^-	Chlorate
ClO ₄ -	Hypochlorate

Compounds Containing Polyatomic Ions

Polyatomic ions form compounds with cations or anions as usual.

Example:

- Na⁺ and OH⁻ is NaOH sodium hydroxide
- K⁺ and SO₄²⁻ is K_2SO_4 potassium sulfate
- Ca^{2+} and PO_4^{3-} is $Ca_3(PO_4)_2$ calcium phosphate
- Cr^{2+} and HCO_3^{-} is $Cr(HCO_3)_2$ chromium (II) hydrogen carbonate
- NH_4^+ and NO_3^- is $NH_4NO_3^-$ ammonium nitrate

Naming Covalent Compounds

- Combination of non metals gives covalent compounds
- The first element is named as such and the second one ends with "ide"
- In a number of cases more than one combination is possible for covalent compounds hence "mono", "di" etc are used to indicate how many atoms are in the compound.
- Note: if the first element is only one then don't indicate it as "mono"

Examples

```
Oxygen difluoride - OF_2
Tetrasulfur tetranitride - S_4N_4
Boron trichloride - BCl_3
Carbon disulfide - CS_2
Nitrogen tribromide - NBr_3
Dinitrogen tetrafluoride - N_2F_4
```

Number	Prefix
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-
10	deca-

Acids and Bases

	Acids		Bases	
1.	Give protons	1.	Accept protons from acids	
2.	Corrosive	2.	Caustic	
3.	Sour	3.	Bitter	
4.	Found in fruit juices	4.	Found in cleaners	
5.	Reacts with metals to give			
	H ₂ gas			
		Ex	amples:	
Examples:		Inc	Inorganic bases	
Mineral acids/Inorganic acids		Str	Strong bases – sodium	
Strong acids - Sulfuric acid,		hy	hydroxide, potassium hydroxide	
nitric acid, hydrochloric acid		We	Weak bases – ammonium	
Weak acids – phosphoric acid,		hy	hydroxide	
acetic acid carbonic acid				

Naming Acids

There are two kinds of acids – binary and oxo-acids

Binary acids (Haloacids) Made from hydrogen halide dissolved in water		Ox Ma an
HF	Hydrofluoric acid	HN
HCl	Hydrochloric acid	H ₂
HBr	Hydrobromic acid	H ₃
HI	Hydroiodic acid	H ₂

Oxoacids Made from polyatomic anions.		
HNO ₃	Nitric acid	
H ₂ SO ₄	Sulfuric acid	
H ₃ PO ₄	Phosphoric acid	
H ₂ CO ₃	Carbonic acid	

Naming Bases

Most bases are hydroxides: e.g. sodium hydroxide, potassium hydroxide etc.

Some other bases are carbonates and hydrogen carbonates (these are weaker bases) e.g.: sodium carbonate, sodium hydrogen carbonate etc.

Polyatomic Ions and Their Acids

Table 2.8	Some Oxoanions and Their Corresponding Oxoacids		
Oxoanion		Oxoacid	
CO_{3}^{2-}	Carbonate ion	H_2CO_3	Carbonic acid
NO_2^-	Nitrite ion	HNO_2	Nitrous acid
NO_3^-	Nitrate ion	HNO ₃	Nitric acid
PO_{4}^{3-}	Phosphate ion	H_3PO_4	Phosphoric acid
SO_{3}^{2-}	Sulfite ion	H_2SO_3	Sulfurous acid
SO_4^{2-}	Sulfate ion	H_2SO_4	Sulfuric acid
$C10^{-}$	Hypochlorite ion	HClO	Hypochlorous acid
ClO_2^{-}	Chlorite ion	HClO ₂	Chlorous acid
ClO_3^-	Chlorate ion	HClO ₃	Chloric acid
ClO_4^-	Perchlorate ion	HClO ₄	Perchloric acid

Naming Hydrates

- Hydrates are ionic compounds that are associated with water.
- The water gets trapped in the ions when the solid crystallizes, and in some cases the solids absorb water (hygroscopic)
- This water can be removed from the compound by heating the compound.
- Naming is as usual for the ionic compound and then add the water as hydrate with the appropriate prefix of the number of water molecules.

Examples and Names:

FeSO₄ · 7H₂O - Iron(II) sulfate heptahydrate

 $CuSO_4 \cdot 5H_2O$ - Copper (II) sulfate pentahydrate

Some Compounds with Common Names

Formula	Common Name	Systematic Name
H ₂ O	Water	Dihydrogen monoxide
NH ₃	Ammonia	Trihydrogen nitride
CO ₂	Dry ice	Solid carbon dioxide
NaCl	Salt	Sodium chloride
N ₂ O	Laughing gas	Dinitrogen monoxide
CaCO ₃	Marble, chalk, limestone	Calcium carbonate
NaHCO ₃	Baking soda	Sodium hydrogen carbonate
$MgSO_4 \cdot 7H_2O$	Epsom salt	Magnesium sulfate heptahydrate
$Mg(OH)_2$	Milk of magnesia	Magnesium hydroxide

Keywords/Concepts

- Empirical formula
- Molecular formula
- Structural formula
- Formula unit
- Ionic compounds nomenclature
- Covalent compounds nomenclature
- Transition metal ions
- Polyatomic ions
- Acids and bases
- Hydrates