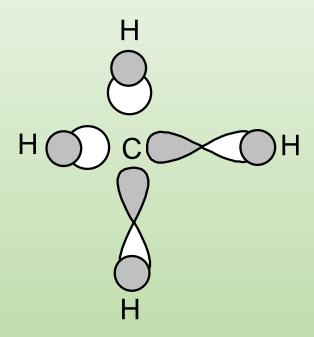
Chapter 10 Bonding Theories

Dr. Sapna Gupta

Valence Bond Theory


 Valence bond theory is an approximate theory put forth to explain the covalent bond by quantum mechanics.

A bond forms when

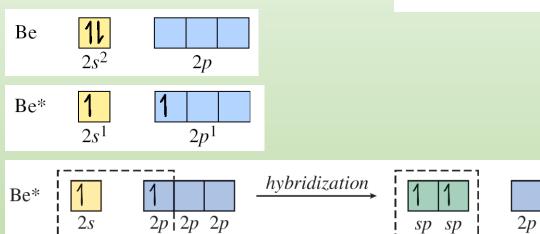
- An orbital on one atom comes to occupy a portion of the same region of space as an orbital on the other atom. The two orbitals are said to overlap.
- The total number of electrons in both orbitals is no more than two. The greater the orbital overlap, the stronger the bond.
- Orbitals (except s orbitals) bond in the direction in which they protrude or point, so as to obtain maximum overlap.

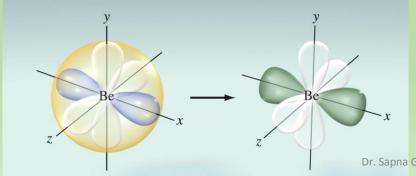
Methane Molecule According to Lewis Theory

- CH₄
- C is central atom: 1s² 2s² 2p²
- Valence electrons for bonding are in the s (spherical) and p (dumbbell) orbitals.
- The orbital overlap required for bonding will be different for the two bonds.
- Two bonds will be longer and two shorter and the bond energy will be different too.
- Therefore there must be a different theory on how covalent bonds are formed.

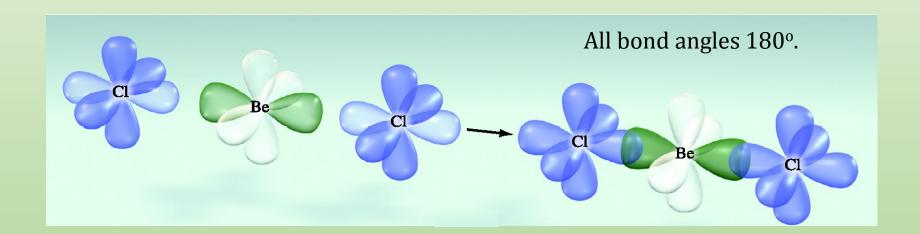
Valence Bond Theory - Hybridization

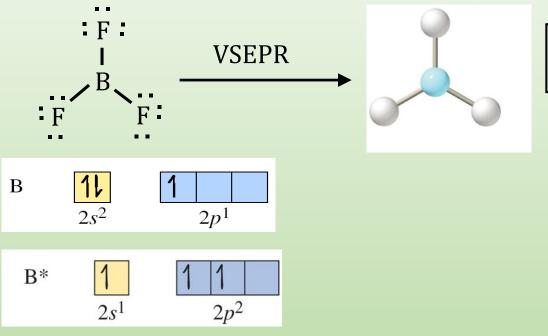
Hybrid orbitals are formed by mixing orbitals, and are named by using the atomic orbitals that combined:


- one *s* orbital + one *p* orbital gives two *sp* orbitals
- one s orbital + two p orbitals gives three sp^2 orbitals
- one *s* orbital + three *p* orbitals gives four sp^3 orbitals
- one *s* orbital + three *p* orbitals + one *d* orbital gives five sp^3d orbitals
- one *s* orbital + three *p* orbitals + two *d* orbitals gives six sp^3d^2 orbitals

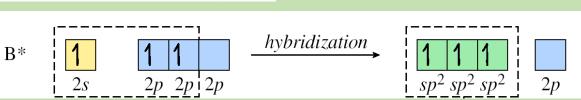

sp

• Beryllium Chloride, BeCl₂

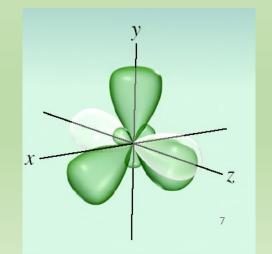

- linear
- both bonds equivalent

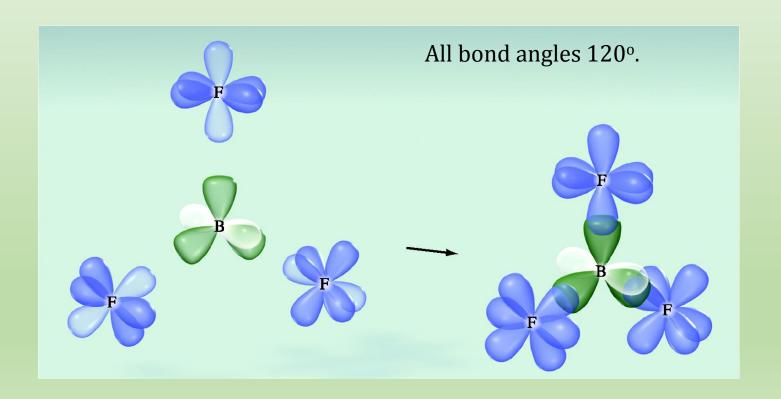

The two *sp* orbitals point in opposite directions inline with one another.

Each Be *sp* orbital overlaps a Cl 3*p* orbital to yield BeCl₂.

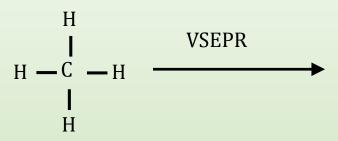


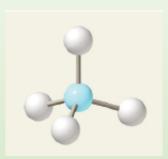
sp^2


• Example: Boron trifluoride, BF₃

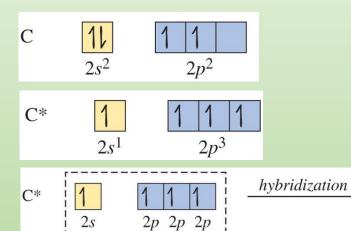

- trigonal planar
- all bonds equivalent

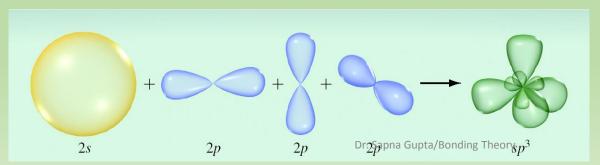
The three sp^2 orbitals point to the corners of an equilateral triangle.




Each B sp^2 orbital overlaps a F 2p orbital to yield BF₃.

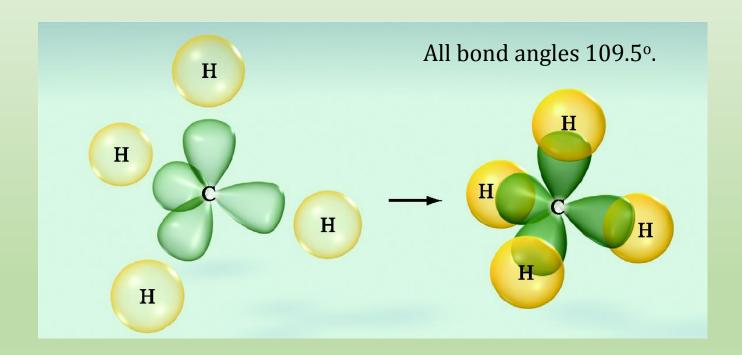
sp^3


• Example: Methane, CH₄



 $sp^3 sp^3 sp^3 sp^3$

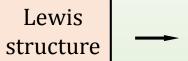
- tetrahedral
- all bonds equivalent



The sp^3 hybrid orbitals point to the corners of a tetrahedron.

Each C $2sp^3$ orbital overlaps a H 1s orbital to yield CH₄.

4H
$$\frac{1}{Is^1}$$
 + C $\frac{1}{sp^3}\frac{1}{sp^3}\frac{1}{sp^3}$ \longrightarrow CH₄

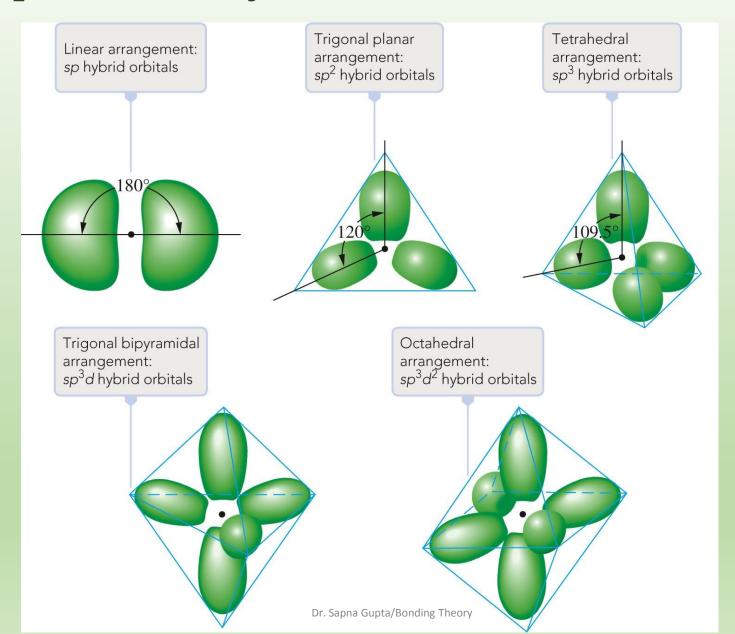


Working out Hybridization

To figure out hybridization on the central atom in a molecule:

- 1. Write the Lewis electron-dot formula.
- 2. Use VSEPR to determine the electron geometry about the atom.
- 3. From the electronic geometry deduce the hybrid orbitals.
- 4. Assign the valence electrons to the hybrid orbitals one at a time, pairing only when necessary.
- 5. Form bonds by overlapping singly occupied hybrid orbitals with singly occupied orbitals of another atom.

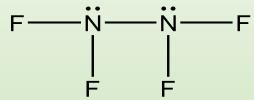
Determining Hybridization


Number of electron domains

Type of hybridization

TABLE 9.4	Number of Electron Domains and Hybrid Orbitals on Central Atom						
Number of Electron Domains on Central Atom Hybrid Orbitals Geometry							
	2	sp	Linear				
	3	sp^2	Trigonal planar				
	4	sp^3	Tetrahedral				
	5	sp^3d	Trigonal bipyramidal				
	6 Dr.	sp^3d^2 Sapna Gupta/Bonding Theory	Octahedral				

Shapes of the Hybridized Orbitals



Hybridized Orbital Characteristics

Electron Groups	AXE formula	Bond Angle	E.g.	Electronic Geometry	Hybridiz ation	Shape of Molecule
2	AX ₂	180°	BeCl ₂	Linear	sp	Linear
3	AX_3	120°	BF ₃	Trigonal planar	sp ²	Trigonal planar
3	AX ₂ E	120°	SO_2	Trigonal planar	sp^2	Bent
4	AX_4	109.5°	CH_4	Tetrahedral	sp^3	Tetrahedral
4	AX ₃ E	109.5°	NH_3	Tetrahedral	sp^3	Trigonal Pyramidal
4	AX_2E_2	109.5°	H_2O	Tetrahedral	sp^3	Bent
5	AX ₅	90°, 120°, 180°	PCl ₅	Trigonal bipyramidal	sp ³ d	Trigonal Bipyramidal
5	AX_4E	90°, 120°, 180°	SF ₄	Trigonal bipyramidal	sp ³ d	Seesaw
5	AX_3E_2	90°, 180°	CIF ₄	Trigonal bipyramidal	sp ³ d	T – shape
5	AX_2E_3	180°	XeF ₂	Trigonal bipyramidal	sp ³ d	Linear
6	AX_6	90°, 180°	SF ₆	Octahedral	$\mathrm{sp}^{3}\mathrm{d}^{2}$	Octahedral
6	AX ₅ E	90 °	BrF ₅	Octahedral	sp^3d^2	Square Pyramidal
6	AX_4E_2	90°	XeF ₄	Octahedral	sp^3d^2	Square Planar
6	AX_3E_3	90°, 180°	Sapna Gupta/B	Octahedral onding Theory	sp^3d^2	T – Shape
6	AX_2E_4	180°		Octahedral	sp^3d^2	Linear

Solved Problem

Use valence bond theory to describe the bonding about an N atom in N_2F_4 .

- 1. The Lewis electron-dot structure shows three bonds and one lone pair around each N atom
- 2. So that is four electron groups (accurately: AX_3E) on central atom
- 3. Therefore a tetrahedral arrangement
- 4. A tetrahedral arrangement has sp^3 hybrid orbitals

Explaining Multiple Bonds

• Consider CO₂ molecule. The Lewis structure is as follows:

- It has carbon as central atom and two oxygen atoms as terminal atoms.
- The electronic geometry is AX₂
- The hybridization on carbon therefore is sp.

 Now consider the HCN molecule. The Lewis structure is as follows:

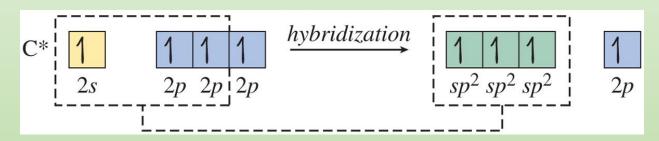
$$H : C \equiv N :$$

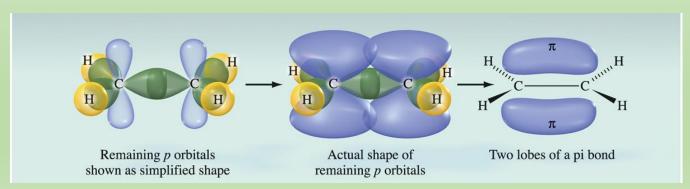
- The carbon is still central with H and N as terminal atoms.
- The electronic geometry is AX₂.
- The hybridization on carbon is still sp.

Solved Problem

What is the hybridization on the central atom in nitrate ion?

Answer:

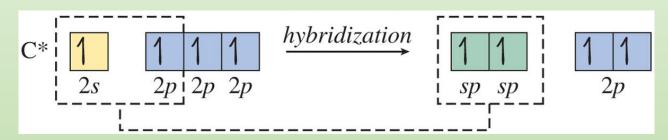

- Lewis structure is
- Electronic geometry of N is AX₃
- Hybridization of a three electron group atom is sp²

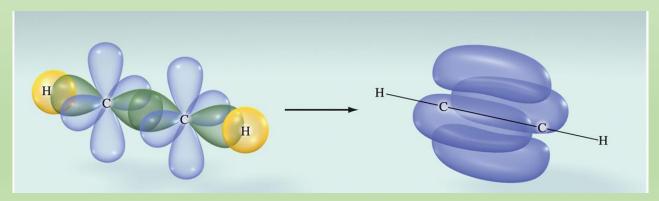

Hybridization of Multiple Bonds

- Single bonds are formed by simple orbital overlap e.g. in H-H bond it is a s-s overlap.
- Some single bonds are hybridized (as discussed in previous slides).
 These are called sigma bonds.
- In a double bond there is a sigma and a pi bond.
- The pi bond is unhybrized orbital overlap of p orbitals.
- In a triple bond there is one sigma and two pi bonds.

$$H \subset C = C \subset H$$

- Number of e- domains = 3
- Hybridization = sp² (shape = trigonal planar, bond angle = 120°)
- There are two central atoms; both carbon.
- Each carbon will mix 1 of s and 2 of p orbitals; 1 of p is left over and this forms the pi bond.



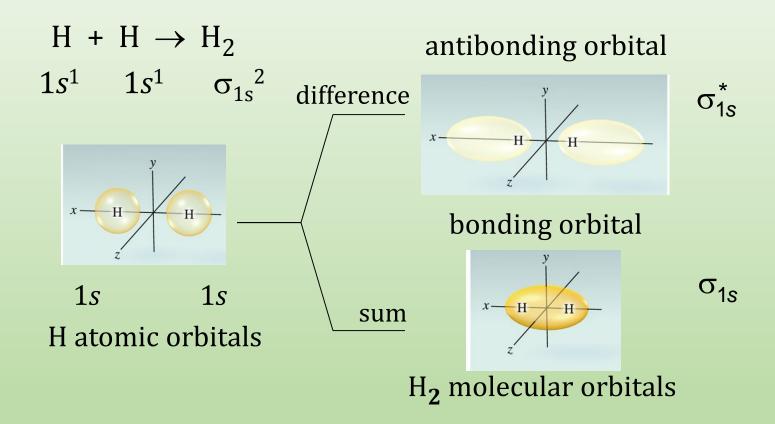

Double bond = $1 \circ \text{bond} + 1 \pi \text{bond}$

Acetylene C₂H₂

$$H-C\equiv C-H$$

- Number of e- domains = 2
- Hybridization = sp (shape = linear, bond angle = 180°)
- There are two central atoms; both carbon.
- Each carbon will mix 1 of s and 1 of p orbitals; 2 of p orbitals are left over and this form two pi bond.

Triple bond = 1σ bond + 2π bonds


Solved Problem

How many pi bonds and sigma bonds are in each of the following molecules? Describe the hybridization of each C atom.

Molecular Orbital Theory

- As atoms approach one another, their atomic orbitals overlap and form molecular orbitals.
- Two atomic orbitals combine to form two molecular orbitals. (4 AO will give 4 MO etc.) (*Half the of MO are bonding and half will be antibonding*.)
- How the orbitals are combining depends on energy and orientation.
 (Wavefuntions + and regions)
- Molecular orbitals concentrated in regions between nuclei (center of orbital) are called **bonding orbitals.** They are obtained by adding atomic orbitals (e.g. ψ + and ψ +).
- Molecular orbitals having zero values in regions between nuclei (and are in other regions) are called **antibonding orbitals.** They are obtained by subtracting atomic orbitals (e.g. ψ + and ψ -).
- (read more at: <u>Chemwiki UCDavis</u>)

Molecular Orbital Theory

Key Points

- Molecular geometry
 - VSEPR model
- Molecular geometry and polarity
- Valence bond theory
- Hybridization of atomic orbitals
 - *s* and *p*
 - *s*, *p*, and *d*
- Hybridization involving multiple bonds
- Molecular orbital theory
 - Bonding and antibonding orbitals