Name:

- 1) Suggest experimental means by which the following reactions can be monitored for rate. $CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$
- 2) Iron (III) chloride is reduced by tin (II) chloride in the following reaction.
 2FeCl₃(aq) + SnCl₂(aq) → 2FeCl₂(aq) + SnCl₄(aq)
 The concentration of Fe³⁺ ion at the beginning of an experiment was 0.03586M and after 4.00 min it was 0.02715M. What is the average rate of reaction of FeCl₃ in this time? What is the rate of formation of tin (IV) chloride? (ans: (E) 0.00218M/min; 0.00109M/min))

3) The rate of the following reaction in aqueous solution is monitored by measuring the rate of formation of I₃⁻. Data obtained are listed in the table below.

 $S_2O_8^{2-} + 3I^- \longrightarrow 2SO_4^{2-} + I_3^-$

Exp	$[S_2O_8^{2-}], M$	[I ⁻], M	Initial rate M/s
1	0.038	0.060	1.4 x 10 ⁻⁵
2	0.076	0.060	2.8 x 10 ⁻⁵
3	0.076	0.120	5.6 x 10 ⁻⁵

- a) Determine the order of the reaction with respect to $S_2O_8^{2-}$, and with respect to I⁻ and overall. (ans: 1,1, 2)
- b) What is the value of rate constant, k? (ans: $6.1 \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$)
- c) What would be the initial rate of reaction if $[S_2O_8^{2-}] = 0.083$ M and $[I^-] = 0.115$ M? (ans: 5.8 x 10^{-5} M/s)

4) A first order A _____ products, has a rate constant k, of 0.0462 min⁻¹.
a) What is the [A] at the time when the reaction is proceeding at a rate of 0.0150 M min⁻¹? (ans: 0.325M)

b) It takes 12 mins for the reaction to 12% completion and 48 min to 56% completion. Without doing detailed calculations, determine how long it should take the reaction to 78% completion? (*Hint*: what is the % remaining each time?) (ans: 84 min)

5) The initial concentration of H_2O_2 is 0.2546 M and the rate constant is 9.32 x 10^{-4} s⁻¹. What will be the [H₂O₂] at t = 35s? (ans: 0.246M)

6) The thermal decomposition of phosphine (PH₃) into phosphorous and molecular hydrogen is a first order reaction.

 $4PH_3 \longrightarrow P_4 + 6H_2$

The half life of the reaction is 35.0 s at 680°C. Calculate
a) The first order rate constant for the reaction. ((*B*)ans: 0.0198/s)
b) The time required for 95% of the phosphine to decompose. ((*B*)ans: 151s)

7) Given the same concentrations, the reaction at 250° C, is 1.50×10^{3} times faster than the same reaction at 150° C. Calculate the activation energy for this reaction. ((*B*)ans: 135KJ/mol) CO(g) + Cl₂(g) COCl₂(g)