Equilibrium/Practice

Name:

1) The reaction of steam and coke (a form of carbon) produces a mixture of carbon monoxide and hydrogen (water gas). The reaction is given below; write the K_c expression for the reaction.

 $C(s) + H_2O(g) \longrightarrow CO(g) + H_2(g)$

2) If the equilibrium concentrations of Cl₂ and COCl₂ are the same at 395 °C, find the equilibrium concentration of CO in the reaction shown below: (ans: 8.3 x 10⁻⁴M) $CO(g) + Cl_2(g) \longrightarrow COCl_2(g) \qquad K_c = 1.2 \times 10^3 \text{ at } 395 \text{ °C}.$

- 3) The equilibrium constant for the reaction given below is 7.07 at 718 K. $\frac{1}{2}$ H₂ (g) + $\frac{1}{2}$ I₂ (g) = HI(g)
 - $\frac{\frac{1}{2} H_2(g) + \frac{1}{2} I_2(g)}{=} HI(g)$ What is the K_c value at 718 K for the two reactions given below? a) HI(g) $\frac{1}{2} H_2(g) + \frac{1}{2} I_2(g)$

b) $H_2 + I_2 \longrightarrow 2HI(g)$

4) Consider the equilibrium between dinigrogen tetraoxide and nitrogen doxide:

$$N_2O_4(g) = 2NO_2(g)$$
 $K_p = 0.660 \text{ at } 319 \text{ K}_p$

- a) What is the value of K_c for this reaction? (ans: 0.0252)
- b) What is value of K_p for the reaction 2NO₂ (g) \longrightarrow N₂O₄(g) (ans: 1.52)
- c) If the equilibrium partial pressure of NO₂ (g) is 0.332 atm, what is the equilibrium partial pressure of N₂O₄(g)? (ans:0.167 atm)

5) If a 2.50 L vessel at 1000 °C containes 0.525 mol CO₂, 1.25 mol CF₄, and 0.75 mol COF₂, in what direction will a net reaction occur to reach the equilibrium? (P50 - ans: 0.857, left) CO₂ (g) + CF₄ (g) \longrightarrow 2COF₂ (g) $K_c = 0.50$ at 1000 K

6) In a 10.0 L vessel at 1000 K, 0.250 mol SO₂ and 0.200 mol O₂ react to from 0.162 mol SO₃ at equilibrium. What is the K_c , at 1000 K for the reaction shown below? (ans: 8.92 x 10³) $2SO_2(g) + O_2(g) = 2SO_3(g)$

7) The following substances are added to a 7.25 L flask at 773 °C contains 0.103 mol CO, 0.205 mol H₂, 2.10 mol CH₄ and 3.15 mol H₂O. In what direction will a net reaction occur to reach the equilibrium? (*P51*; ans: 97-forward)

 $CO(g) + 3H_2 \longrightarrow CH_4 + H_2O \quad K_p = 102 \text{ at } 773 \text{ K}$

8) Starting with 0.100 mol each of CO and H₂O in a 5.00 L flask, equilibrium is established in the following reaction at 600K:

 $CO(g) + H_2O(g)$ \longrightarrow $CO_2(g) + H_2(g)$ $K_c = 23.2$ at 600K What is the concentration of hydrogen at equilibrium? (*P12A*; ans: 0.0165M)

9) Starting with 0.100 mol CO and 0.200 mol CO₂ in a 25.0 L flask, how many mols of COCl₂ will be present at equilibrium? (*P13A*; ans: 8.5 x 10⁻²mol)

 $CO(g) + Cl_2(g) \longrightarrow COCl_2(g) \qquad K_c = 1.2 \times 10^3$

10) The reaction between carbon monoxide and steam is given below.

 $CO(g) + H_2O(g) - CO_2(g) + H_2(g) \Delta H = -41KJ; K_c = 9.03 at 698 K$ Using LeChatlier's principles predict which direction the equilibrium will proceed when the following changes are made.

- a) Carbon monoxide is added
- b) Carbon dioxide is removed
- c) The reaction is heated up
- d) The reaction vessel is compressed to half its volume
- e) A catalyst is added
- f) A 1 L of argon is added to the reaction vessel