Chapter 1: Chemistry, Matter and Measurement

Chemistry: study of matter Physical property: e.g. color, solid/liquid/gas Chemical change: irreversible (rusting, spoiling of milk)

chemical property: e.g. reactivity physical change (reversible): ice to water

Scientific Method

Observation -> Hypothesis -> Experimentation (collect data), must be replicable -> Theory ->Law

Scientific Measurements

Physical Quality	Non SI	SI	Giga (G)	109
Length	Miles, feet	Meters (m)	Mega (M)	106
Weight	Pounds, ounces	Grams (g)	Kilo (k)	10 ³
Time	Seconds	Seconds (s)	Deci (d)	10-1
Temperature	Degree Fahrenheit,	Kelvin (K)	Centi (c)	10-2
	Celsius		Milli (m)	10-3
Electric current	Ampere	Ampere (A)	Micro (µ)	10-6
Volume	Gallons, quarts	Liters (L)	Nano (n)	10-9
Pressure	Atm, torr, Pascal	Newtons (N)	Pico (p)	10-12

Temperature Unit Conversions:

 $^{o}C = (^{o}F-32)/1.8$

AND $^{\circ}F = 1.8^{\circ}C + 32$

Measuring Instruments:

<u>Length</u>: meter stick or measuring tape <u>Solid Volume</u>: meter stick

<u>Time</u>: stop watch or watch <u>Liquid volume</u>: measuring cylinder, beakers Weight: electronic balance, analytic balance

<u>Temperature</u>: mercury or digital thermometer Pressure: barometer

Measurement

<u>Precision</u>: measured values close to each other <u>Accuracy</u>: measured value close to actual value <u>Extensive Property</u>: dependent on amount of substance <u>Intensive Property</u>: independent of amount of substance

Significant figures (SF)

Measured value, depends on the measuring instrument and technique. E.g. 4.335 - 4 SF 2.09 - 3 SF 200 - 1 SF 0.091 - 2 SF 2.00 - 3 SF

Density (g/mL): $d = g/mL (1 \text{ cm}^3 = 1 \text{ mL})$