Chapter 1: Chemistry, Matter and Measurement

Chemistry: study of matter

Physical property: e.g. color, solid/liquid/gas chemical property: e.g. reactivity

Chemical change: irreversible (rusting, spoiling of milk) physical change (reversible): ice to water

Scientific Method

Observation -> Hypothesis -> Experimentation (collect data), must be replicable -> Theory -> Law

Scientific Measurements

Physical Quality	Non SI	SI
Length	Miles, feet	Meters (m)
Weight	Pounds, ounces	Grams (g)
Time	Seconds	Seconds (s)
Temperature	Degree Fahrenheit,	Kelvin (K)
	Celsius	
Electric current	Ampere	Ampere (A)
Volume	Gallons, quarts	Liters (L)
Pressure	Atm, torr, Pascal	Newtons (N)

Giga (G)	10^{9}
Mega (M)	10^{6}
Kilo (k)	10^{3}
Deci (d)	10-1
Centi (c)	10-2
Milli (m)	10-3
Micro (µ)	10-6
Nano (n)	10-9
Pico (p)	10-12

Temperature Unit Conversions: $| {}^{\circ}\text{C} = ({}^{\circ}\text{F-32})/1.8 |$

$$^{\circ}C = (^{\circ}F-32)/1.8$$

$$^{\circ}F = 1.8^{\circ}C + 32$$

Measuring Instruments:

Length: meter stick or measuring tape Time: stop watch or watch

Liquid volume: measuring cylinder, beakers Solid Volume: meter stick Temperature: mercury or digital thermometer Weight: electronic balance, analytic balance

Pressure: barometer Measurement

Precision: measured values close to each other Accuracy: measured value close to actual value

Extensive Property: dependent on amount of substance Intensive Property: independent of amount of substance

Significant figures (SF)

Measured value, depends on the measuring instrument and technique.

Density (g/mL): d = g/mL (1 cm³ = 1 mL)