Chapter 4: Reactions in Aqueous Solutions

Electrical Properties of Aqueous Solutions

Electrolytes:

- Arrhenius theory: non, weak, strong (depending on ionization in solution)
- Most ionic compounds are strong electrolytes.
- Some molecular acids are strong electrolytes.
- Most molecular compounds and organic compounds are weak or non electrolytes.

Precipitation Reactions

Solubility rules		
Soluble		Insoluble
Group I salts		
Ammonium salts		
Nitrates		
Acetates		
Perchlorates		
Halides	except	Pb^{2+}, Ag^+, Hg_2^{2+}
Sulfates	except	Sr ²⁺ , Ba ²⁺ , Ca ²⁺ , Pb ²⁺ , Hg ₂ ²⁺ , Ag ⁺
Except Groups II salts		Carbonates
		Phosphates
Ca^{2+}, Ba^{2+}		Hydroxides
Except Groups II salts		Sulfides

• Writing and predicting products of reactions

Acid base reaction – neutralization

	Acid	+	Base	Salt	+	Water
Eg	HC1	+	NaOH	NaCl	+	H_2O

Reactions of Acids and Bases

- Strong and weak acids: strength depends on concentration of $[H_3O^+]$ in solution.
- Strong and weak bases: strength depends on concentration of [OH^{-]} in solution.

Oxidation and Reduction

Oxidation

- Addition of oxygen
- Removal of hydrogen
- Loss of electrons (LEO)

Oxidizing and reducing agents

Oxidizing agent

- reduced in the reaction
- causes the other substance to be oxidized
- Oxidation number decreases (as electrons are accepted)
- E.g.: non metals

• Addition of hydrogen

Reduction

• Gain of electrons (GER)

• Removal of oxygen

- Reducing agent
 - oxidized in the reaction
 - causes the other substance to be reduced
 - Oxidation number increases (as electrons are given)
 - E.g. metals as they give electrons

Oxidation Numbers: charge on any ion

<u>Rules for determining oxidation number:</u> Neutral species e.g. metals and bimolecular compounds (Cl₂, O₂ etc) have 0 For ions the Oxdn # is the charge on the ion e.g. Cr^{6+} is +6 and SO_4^{2-} is -2 Group I is always +1 Group II is always +2 Fluorine is always -1 Hydrogen is always +1 Oxygen is mostly -2 In group binary compounds VII are -1 (e.g. NaCl, Cl is -1) VI are -2 (e.g. K₂S) V are -3 (NaN₃)

- Identify the species getting oxidized or reduced in a reaction. (Redox reactions)
- First see if oxygen or hydrogen is gained or lost and then check for electron transfer.
- Balancing redox reactions.

Practical Applications

- 1) batteries
- 2) organic chemistry: alcohol
- 3) industrial processes
- 4) household chemicals e.g. H₂O₂, benzyl peroxide, bleach
- 5) food and nutrition: energy from aerobic oxidation of carbohydrate and vitamin C as antioxidant.

Solutions

Solution = solute + solvent (the larger quantity) Saturated, concentrated and dilute solutions.

Unless specified most solutions will be made in water.

<u>Molar concentration (molarity)</u> Molarity (M) = mol/L (also the units)

Dilution of solutions

 $M_1V_1 = M_2V_2$ Initial values = final values
(since number of actual mols of solute does not change only amount of solvent changes)

Solutions in chemical reactions: acid base titration

Titrations: Quantitative neutralization reactions.

Calculations of titration: e.g. how much acid of a known concentration will it take to neutralize a base of unknown concentration? (One of the chemicals has to have known concentration) Calculation set up similar to stoichiometry in chapter 3.

$$\frac{\text{vol Acid}}{x} x \frac{\text{molarity of Acid}}{x} x \frac{\text{mol base}}{\text{mol acid}} x \frac{1}{\text{vol base}} = \text{molarity of base}$$

(to calculate mols of acid used) (from balanced equation)