Chapter Summary: Thermodynamics

Spontaneous change: a change that occurs without external action. If the forward reaction is spontaneous then reverse is non spontaneous. (note: spontaneous does not mean fast)

<u>Entropy</u>: degree of orderliness of a system. (Represented by ΔS). E.g. entropy increases when ice melts to liquid and liquid vaporizes to steam.

<u>Second Law of Thermodynamics</u>: all spontaneous process increase the entropy of the universe. <u>Third Law of Thermodynamics</u>: entropy of a pure, perfect crystal can be taken to be 0 at 0K.

<u>Standard Molar Entropy</u> (S^o): entropy of a mole of substance in its standard state. Standard entropy of a reaction (Δ S^o) can be calculated by: Δ S = $\sum n_p S_f^o$ (products) – $\sum n_f S_f^o$ (reactants)

<u>Free Energy and Free Energy Change</u> (ΔG): Gibbs free energy determines the spontaneity of a process.

 $\Delta G = \Delta H - T\Delta S$ hence if $\Delta G < 0$ then process is spontaneous if $\Delta G > 0$ then non spontaneous and

if $\Delta G = 0$ then process is in equilibrium.

<u>Standard free energy of a system</u> (ΔG°) is when all reactants and products are in their standard states (P = 1 atm, solids and liquids are pure, etc.). It predicts the direction of the equilibrium. $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

 $-\Delta G^{o}$ indicates large K value (products favored)

+ ΔG^{o} indicates small K value (reactants favored)

<u>Standard free energy of formation</u> (ΔG_f^{o}) is free energy change that occurs in the formation of one mole of substance in their standard state.

<u>Standard free energy of a reaction</u> can be calculated by: $\Delta G^{o} = \sum n_{p} G_{p}^{o} \text{ (products)} - \sum n_{r} G_{r}^{o} \text{ (reactants)}$

Relationship between ΔG and ΔG°

 $\Delta G = \Delta G^{o} + RT \ln Q$

(R = gas constant = 8.314 J/K, T = temp in K, Q = reaction quotient)Use this equation to figure out if reaction is spontaneous at a particular temp. at specific concentrations of reactants and products.

<u>Relationship between ΔG and K</u> $\Delta G = 0$ at equilibrium and Q = K at equilibrium So the equation above becomes: $\Delta G^{\circ} = - RT \ln K$

Value of ΔG° still predicts direction of reaction not spontaneity of reaction.