
Molecular Structure and Bonding

Dr. Sapna Gupta

Origins of Organic Chemistry

- Initially thought to be chemicals that were obtained from plants and animals only.
- Thought to have a "vital force" as they from natural sources.
- Distinctions were made between organic and inorganic chemistry because of this vital force.
- It was also supposed that inorganic chemicals could not make organic chemicals until in 1828, Woehler synthesized urea from ammonium cyanate.

What is Organic Chemistry?

- It is the study of compounds containing carbon bonded with hydrogen, oxygen, sulfur, nitrogen, phosphorous and halogens.
- Carbon is the only non metal in group IV; Si and Ge are metalloids and Sn and Pb are metals.
- Bonding for carbon can be covalent and ionic.
- It can combine with only group I and II metals.
- Some compounds of carbon not considered to be organic are: CO, CO₂, CO₃²⁻, HCO₃⁻, CN⁻.
- There are over 10 million organic compounds.

Review: Atomic Structure

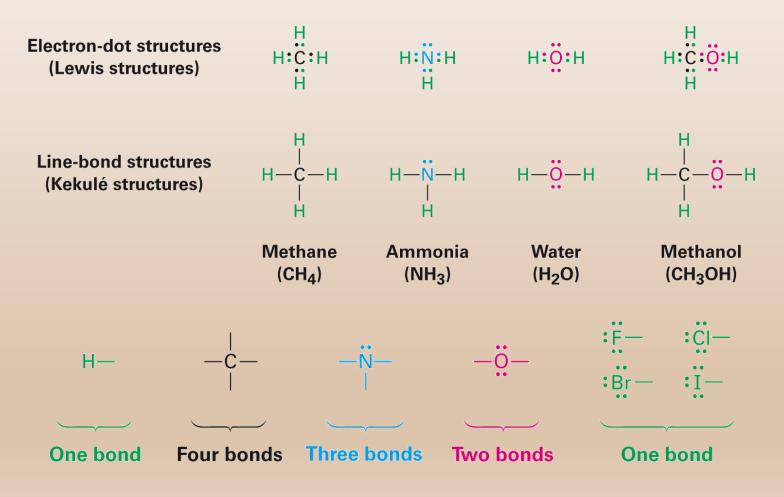
- Atoms have electrons, protons and neutrons. Protons and neutrons are found in the nucleus in the center of the atom and electrons are in shells outside the nucleus.
- Atomic weight is the number of protons and neutrons in an atom.
- Atomic number is the number of protons in an atom.
- Isotopes are atoms with same atomic number and different number of neutrons.

Electronic Configuration

- Electrons are found in specific regions called shells and in specific regions spdf.
- Energy:
 - s lowest in energy (2e⁻); p higher in energy (6e⁻); d transition elements (10e⁻); f – lanthanides and actinides (14e⁻)
- Shape:
 - s subshell is spherical shape (only one); p is dumbbell (3 shapes); d has 5 shapes and f has 7.
- Electrons are filled by energy level and in opposite spins. (Aufbau principle, Pauli Exclusion principle and Hund's rule)

Electronic Configuration diagrams

- First shell contains one s orbital, denoted 1s, holds only two electrons
- Second shell contains one s orbital (2s) and three p orbitals (2p), eight electrons
- Third shell contains an s orbital (3s), three p orbitals (3p), and five d orbitals (3d), 18 electrons



Bonding

- Lewis structures shows electrons as dots.
- Two kinds of bonding: covalent and ionic. Covalent is sharing of electrons and ionic is transfer of electrons.
- Covalent is found in non metals and ionic is metals and non metals.
- In organic chemistry we deal more with covalent bonding.

Lewis Structures

• Representing the bonds (electron pairs) using lines is common. Lone pair of electrons can be represented by just dots.

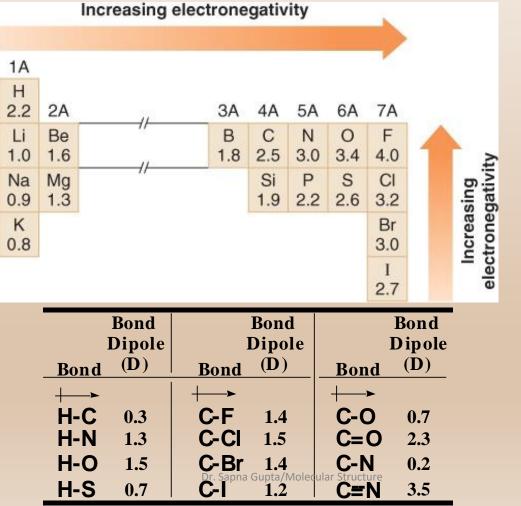
Covalent Bonds

- The simplest covalent bond is that in H₂
 - The single electrons from each atom combine to form an electron pair which are shared equally in the valence shell.

 $H \bullet + \bullet H \longrightarrow H-H \Delta H^0 = -435 \text{ kJ} (-104 \text{ kcal})/\text{mol}$

- The number of shared pairs gives the number of bonds.
 - One shared pair forms a single bond (e.g. hydrogen, halogens)
 - Two shared pairs form a double bond (e.g. oxygen, carbon dioxide)
 - Three shared pairs form a triple bond (e.g. nitrogen, hydrogen cyanide)

Types of Covalent Bonds


- We divide covalent bonds into
 - nonpolar covalent bonds and
 - polar covalent bonds.
- Non polar covalent bonds are either the bonds between the same atoms or with less than 0.5 electronegativity difference. E.g. H₂, Cl₂, CH₄.
- An example of a polar covalent bond is that of H-Cl.
- The difference in electronegativity between Cl and H is 3.0 2.1 = 0.9.
- We show polarity by using the symbols δ + and δ -, or by using an arrow with the arrowhead pointing toward the negative end and a plus sign on the tail of the arrow at the positive end.

Difference in Electronegativity Between Bonded Atoms	Type of Bond	δ+ δ- Η	+► HQ
Less than 0.5	Nonpolar covalent		
0.5 to 1.9	Polar covalent		
Greater than 1.9	Ions form		

Dipole Moment and Electronegativity

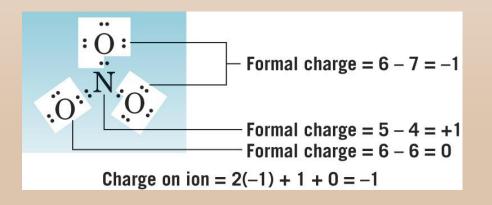
Dipole moment is a measure of the polarity of a covalent bond, which comes from the difference in electronegativity.

Electronegativity is a measure of an atom's attraction for electrons in a bond.

11

Formal Charge

- It is the charge on an atom in a molecule or a polyatomic ion.
- To derive formal charge
 - Write a correct Lewis structure for the molecule or ion.
 - Assign each atom all its unshared (nonbonding) electrons and one-half its shared (bonding) electrons.
 - Compare this number with the number of valence electrons in the neutral, unbonded atom.
 - The sum of all formal charges is equal to the total charge on the molecule or ion.


Formal = Number of charge = valence electrons in the neutral, unbonded atom	All unshared - electrons	One half of + all shared electrons
--	--------------------------------	--

Calculating Formal Charge

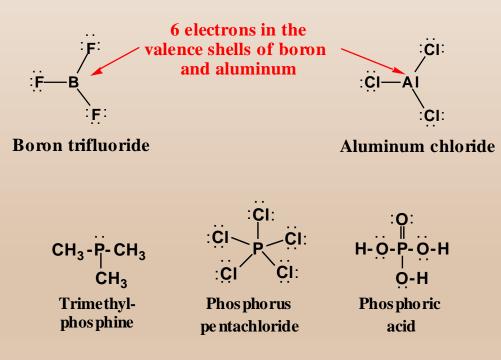
• Ammonium ion $(NH_4)^+$

H + H:N:H	For hydrogen:	valence electrons of free atom subtract assigned electrons Formal charge	= 1 = -1 = 0	
Η̈́Η	For nitrogen:	valence electrons of free atom subtract assigned electrons Formal charge	= 5 $= -4$ $= +1$	
Charge on ion = $4(0) + 1 = +1$				

• Nitrate ion (NO₃)⁻

Formal Charges Table

Group	Formal Charge of +1	Formal Charge of 0	Formal Charge of1
ЗA		∼ _B ∕	—B—
4A	$C^+_{C} = C^+_{C} = C^+_{C}$	-C = C = C = C	$-\ddot{c} =\dot{c}$ \equiv c
5A	$-\overset{ }{N}\overset{+}{=}=\overset{+}{N}\overset{=}{=}\overset{+}{N}\overset{-}{=}\overset{+}{{}\overset{+}{N}\overset{-}{=}\overset{+}{{}}\overset{+}$	$\begin{vmatrix} -\ddot{N} - \swarrow \ddot{N} \\ \downarrow \end{vmatrix} = N:$	—ÿ- =Ŋ-
6A	—Ö <u>+</u> 	—ġ— — =ġ	—ö.:
7A	—X ⁺	$-\ddot{X}:(X = F, CI, Br, or I)$: Ẍ́ :-


Problem: Lewis Structure and Formal Charge

Draw Lewis structures, and show which atom in each bears the formal charge

(a) NH_2^{-1} (b) HCO_3^{-1} (c) CO_3^{-2} (d) $CH_3NH_3^{+1}$ (e) $HCOO^{-1}$ (f) CH_3COO^{-1}

Exceptions to the Octet Rule

- There are three exceptions:
- Incomplete valence shell usually group III
- Expanded valence shell usually covalent compounds of the 3rd row e.g. P, S, Cl, I etc.
- Unpaired electrons usually N

Key Words/Concepts

- Electronic Configurations
- Lewis structures
- Bonding
 - Ionic
 - Covalent
 - Polar Covalent
- Electronegativity
- Formal Charge
- Exceptions to Octet Rule