Constitutional Isomers

Dr. Sapna Gupta

Constitutional Isomers

- \sim
- Compounds that have same molecular formula but different structure.
- E.g. C_4H_{10} : two isomers: butane and 2-methyl propane.
- Think of constitutional isomers as having a given number of colored lego blocks that you can make whatever you want.
- The table below shows the number of isomers possible for the given formula of an alkane.

Molecular Formula	Possible Number of Constitutional Isomers
C_4H_{10}	2
C ₅ H ₁₂	3
C_6H_{14}	5
C_7H_{16}	9
C ₈ H ₁₈	18
C_9H_{20}	35
$C_{10}H_{22}$	75
$C_{15}H_{32}$	4,347
C ₂₀ H ₄₂	366,319
C ₃₀ H ₆₂	4,111,846,763
$C_{40}H_{82}$	62,481,801,147,341

Constitutional Isomers – General Info

- 1. The first step is to see whether the molecular formula is that of alkane, alkene (2H less than alkane) or alkyne (4H less than alkane).
- 2. Use the C_nH_{2n+2} formula to check point number 1. I use the C_nH_{2n} and then see if I have more or less Hs – it's an easier calculation. E.g. C_4H_{10} , C_nH_{2n} would give me 8 H for 4 C; and I have 2 more Hs – so I have an alkane formula.
- 3. If there is a halide (Cl, Br etc.) treat it as a H.
- 4. An oxygen can just fit in between two atoms, so don't use it in the C_nH_{2n} formula.
- 5. If there is a N then you are writing amines. At this point, you will be writing only saturated amines (no double bonds).

Constitutional Isomers –General Info – contd...

- 1. Write the isomers systematically. If you move too many atoms then its hard to keep track of all the isomers.
- 2. Move carbons first or move functional group first, depending on what is easier.
- 3. Be careful of writing duplicates.
- 4. Carbons or functional groups going up and down are the same, unless you are writing cyclic isomers, then the direction matter.
- 5. Try to write isomers in line structures. Don't write hydrogens. It will take too much time and you might forget a hydrogen here or there. If your functional group is correct then your hydrogens will also be correct.
- 6. It is a good idea to count the carbons and hydrogens for the first structure you write for every different functional group. It helps in keeping track of atoms.
- 7. Number your carbons and locations of substituents/functional group, if necessary, to make sure you are not repeating an isomer.

Constitutional Isomers – General Info – contd...

- 1. These are only tips for functional groups and constitutional isomers but they are good guide, as you will see in the examples that follow.
- 2. The following functional groups have the same molecular formula: Alkanes are just alkanes

Alkenes and cycloalkanes

Alkynes and cycloalkenes

Alcohols and ethers

Aldehyde and ketones

Carboxylic acids and esters

 $1^{\circ}\!,\,2^{\circ}$ and 3° amines

Constitutional Isomers of Alkanes

- Write constitutional isomers for C_5H_{12}
- Make sure that the molecular formula follows the $\mathsf{C}_n\mathsf{H}_{2n+2}$ number of hydrogens.
- Start with the straight chain (that counts as one isomer!)

- Move a second carbon.
- Total of 4 isomers only.

Constitutional Isomers of Alkenes

- Write constitutional isomers for C_5H_{10}
- Make sure that the molecular formula follows the $C_{\rm n}H_{\rm 2n}$ $\,$ number of hydrogens.
- Start with the straight chain. The following two are the same.

• Move the double bond. The following two are the same.

• Move a carbon using the above isomers. The first two are the same.

• Now write the cycloalkanes. Start with the largest ring possible.

Total of 10 isomers!

Constitutional Isomers of Oxygen

- Write constitutional isomers for $C_5H_{12}O$
- The molecular formula follows the C_nH_{2n+2} number of hydrogens, indicating all single bonds. Don't count the oxygen.
- Write one functional group first. I will start with alcohols.
- Start with the straight chain, and move the alcohol group.

• Move one carbon. The last one here is the same as the 2^{nd} one above.

.OH

• Move the second carbon using the above isomers.

Total of 11 isomers!

Constitutional Isomers of Oxygen

- Write constitutional isomers for $C_5H_{10}O$
- The molecular formula follows the $C_{\rm n}H_{\rm 2n}$ number of hydrogens indicating that there is ONE double bond somewhere. Don't count the oxygen in the formula.
- Write one functional group at a time. The next slide has all the isomers grouped together in functional groups.
 - Alcohols/Alkenes and Cyclic Alcohols
 - Ethers/Alkenes and Cyclic Ethers
 - Aldehydes/Ketones
 - There are total 40!!!

All isomers of C₅H₁₀O

Alcohols/Alkenes and Cyclic Alcohols

• Ethers/Alkenes and Cyclic Ethers

• Aldehydes/Ketones

Constitutional Isomers of Acids

- Write the constitutional isomers of $C_5H_{10}O_2$.
- The two oxygens and one double bond indicates acids and esters.
- More isomers are possible alcohols+aldehydes; alcohols+ketones etc.
- Here we will focus on just acids and esters.
- Acids

Constitutional Isomers of Amines

- Write all constitutional isomers of $C_5H_{13}N$.
- Amines can be primary, secondary and tertiary.

Secondary

• Tertiary

Concepts

- Know your functional groups.
- As the number of carbons and hydrogens increase the number of isomers will also increase. It can be overwhelming! I have chosen 5 carbons to give a good idea of the number of isomers possible.
- There is no formula that tells you how many isomers you will have. You just have to write them all.
- For the above two reasons, you are generally asked for either a specific number of isomers or specific functional group of isomers.