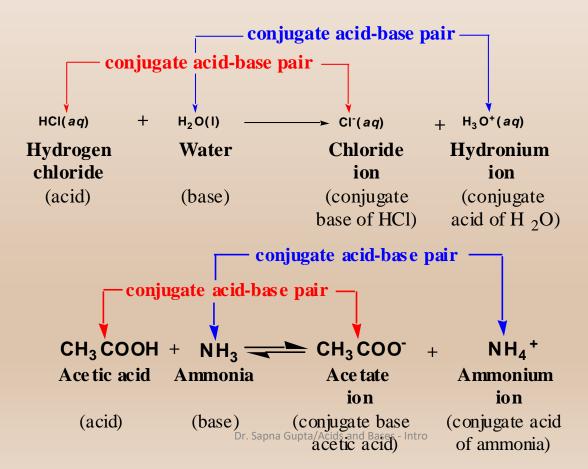

Acids and Bases – 1- Introduction

Dr. Sapna Gupta


Acids and Bases

- A Brønsted acid donates a hydrogen cation (H⁺)
- A Brønsted base accepts the H⁺
 - "proton" is a synonym for H⁺ loss of an electron from H leaving the bare nucleus a proton
 - Full headed arrows indicate transfer of electrons.

Conjugate Acid Base Pairs

- Conjugate base: formed from an acid when it donates a proton to a base. A **strong acid** gives **a weak conjugate base** and vice versa.
- Conjugate acid: formed from a base when it accepts a proton from an acid. A **strong base** gives a **weak conjugate acid** and vice versa.

Examples of Acids and Bases

• There are inorganic (mineral) and organic acids and bases.

Copyright © The McGraw-Hill Companies, Brønsted-Lowry acids [H – A]		, Inc. Permission required for reproduction or display. Brønsted-Lowry bases [B:]			
Inorganic	Organic	Inorganic		Organic	
HCI H ₂ SO ₄	CH ₃ CO ₂ H acetic acid	H₂Ö:	:NH ₃	CH ₃ ŇH ₂ methylamine	CH ₃ Ö. methoxide
HSO ₄ - H ₂ O H ₃ O+	OH $HO_2CCH_2 - C - CH_2CO_2H$ COOH citric acid	÷öH	∹ÑH₂	CH ₃ C=Ö CH ₃ acetone	CH ₂ =CH ₂ ethylene
 All Brønsted–Lowry acids contain a proton. The net charge may be zero, (+), or (–). 		 All Brønsted–Lowry bases contain a lone pair of electrons or a π bond. The net charge may be zero or (–). 			

Solved Problems

 1) What is conjugate acid of NH₃? a) NH₂ b) NH₂⁺ c) NH₂⁻ d) NH₄ e) NH₄⁺ 	2) What are the conjugate bases in the reaction below? $CO_3^{2-} + HSO_4^{-} \longrightarrow HCO_3^{-} + SO_4^{2-}$ a) HCO_3^{-} and HSO_4^{-} b) HSO_4^{-} and CO_3^{2-} c) CO_3^{2-} and OH^{-} d) SO_4^{2-} and HSO_4^{-} e) CO_3^{2-} and SO_4^{-2-}
 3) For the reaction below which two substances which are both acids → CH₃NH₃⁺ + H₂O CH₃NH₂ + H₃O⁺ a) H₂O and H₃O⁺ b) CH₃NH₃⁺ and H₂O c) CH₃NH₃⁺ and CH₃NH₂ d) CH₃NH₃⁺ and H₃O⁺ e) CH₃NH₂ and H₂O 	 4) A strong acid leads to a a) weak conjugate acid b) strong conjugate base c) weak conjugate base d) strong base e) pure water