Stereochemistry 4-Final Thoughts

Dr. Sapna Gupta

Stereoisomers With no Chiral Centers

If the conformer is sterically hindered, it may exist as enantiomers. Examples given below and allenes.

Properties of Stereoisomers

- Enantiomers have identical physical and chemical properties in achiral environments.
- Diastereomers are different compounds and have different physical and chemical properties.
 - meso tartaric acid, for example, has different physical and chemical properties from the R,R and S,S enantiomers
 - Some properties of the stereoisomers of tartaric acid.

	<u>C</u> OOH	COOH	<u>C</u> OOH
	H►Ḉ→OH	но⊷с⊸н	н₩₽
	HO-C-H		
	- COOH	EOOH	- TOOH
(R,R)-Tartaric acid	(S, S)-Tartaric acid	Meso tartaric acid
specific rotation	+12.7	-12.7	0
m elting point (° C)	171-174	171-174	146-148
density at 20° C (g/cm ³)	1.7598	1.7598	1.660
solubility in water at 20°C (g/100 mL)	139	139	125
$pK_1(25^\circ C)$	2.98	2.98	3.23
pK ₂ (25°C)	4.34	4.34	4.82

Resolution

HO

- Racemic mixture: An equimolar mixture of two enantiomers.
 - because a racemic mixture contains equal numbers of dextrorotatory and levorotatory molecules, its specific rotation is zero.
- Resolution: The separation of a racemic mixture into its enantiomers.
- One means of resolution is to convert the pair of enantiomers into two diastereomers.
 - Diastereomers are different compounds and have different physical properties.
- A common reaction for chemical resolution is salt formation.

=` RCOO⁻ НВ⁺ RCOOH **:**B $(\mathbf{R} + \mathbf{S})$ -Carboxylic (\mathbf{R}) -Base (\mathbf{R}, \mathbf{R}) -Salt + (\mathbf{S}, \mathbf{R}) -Salt) acid

- After separation of the diastereomers, the enantiomerically pure acids are recovered by addition of an achiral acid.
- Racemic acids can be resolved using commercially available chiral bases such as 1phenylethanamine. NH₂

Review of all Isomers

• Here is a flowchart of all isomers we have done so far.

Determining Stereochemistry

Key Words/Concepts

- Stereoisomers
- •Chiral Center
- •Chirality
- •Enantiomer
- •Plane polarized light
- •Dextrorotatory (d)
- •Laevorotatory (l)
- •Diastereomers
- Meso compounds

- •Cahn Ingold and Prelog nomenclature
- •Configurations (R and S)
- •Racemic mixtures
- •Fisher projections
- •Enantiomeric excess
- •Absolute configuration
- •Resolution