Organic Reactions

Dr. Sapna Gupta

Reaction Mechanism

- How reactions take place
- What bonds break and make as reaction progress
- Drawing curved arrows
- Determining if a reaction can take place

Types of Reactions

Addition

Elimination

This one reactant . . .
$$H = \begin{pmatrix} H & OH \\ -C & -C \\ -H & H \end{pmatrix}$$
 Acid catalyst $H = \begin{pmatrix} H & H \\ -C & -C \\ -H & H \end{pmatrix}$ $H = \begin{pmatrix} H & H \\ -C & -C \\ -H & H \end{pmatrix}$ $H = \begin{pmatrix} H & H \\ -C & -C \\ -H & H \end{pmatrix}$ $H = \begin{pmatrix} H & H \\ -C & -C \\ -H & H \end{pmatrix}$ $H = \begin{pmatrix} H & H \\ -C & -C \\ -H & H \end{pmatrix}$ $H = \begin{pmatrix} H & H \\ -C & -C \\ -H & H \end{pmatrix}$ $H = \begin{pmatrix} H & H \\ -C & -C \\ -H & H \end{pmatrix}$ two products.

Substitution

Methane

Chlorine

Chloromethane

Rearrangement

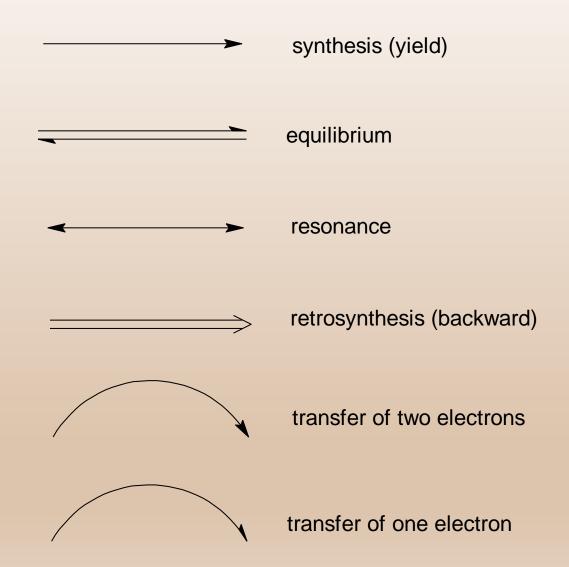
This reactant . . .
$$\begin{array}{c} \text{CH}_3\text{CH}_2 \\ \text{H} \end{array} \begin{array}{c} \text{H} \\ \text{H} \end{array} \begin{array}{c} \text{Acid catalyst} \\ \text{H} \end{array} \begin{array}{c} \text{H}_3\text{C} \\ \text{H} \end{array} \begin{array}{c} \text{C} \\ \text{CH}_3 \end{array} \begin{array}{c} \text{C. . . gives this isomeric product.} \end{array}$$

Steps in Reaction Mechanism

- Bond formation or breakage can be symmetrical or unsymmetrical
 - **Symmetrical** homolytic
 - **Unsymmetrical** heterolytic

$$A : B \longrightarrow A^+ + :B^-$$

Symmetrical bond-breaking (radical): one bonding electron stays with each product.


Unsymmetrical bond-breaking (polar): two bonding electrons stay with one product.

$$A \stackrel{\frown}{\longleftarrow} B \longrightarrow A : B$$

$$A^+ + : B^- \longrightarrow A : B$$

Symmetrical bond-making (radical): one bonding electron is donated by each reactant.

Review - Arrows

Polar Reactions

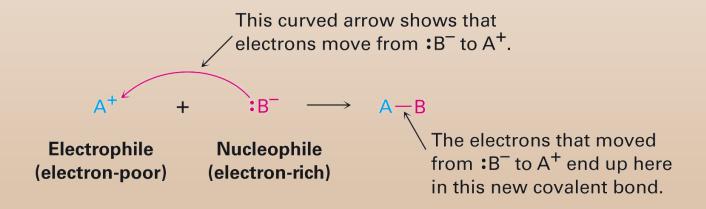

- Reactions occur at polar bonds.
- The more electronegative element has a negative charge (like a Lewis base)
- The atom bonded to the electronegative atom will have a partially positive charge (Lewis acid)
- Elements such as O, F, N, Cl are more electronegative than carbon

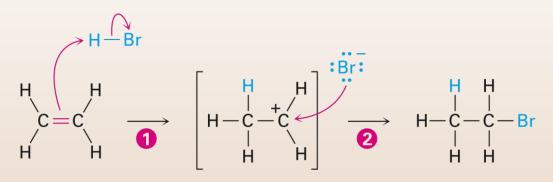
Table 6.1 Polarity Patterns in Some Common Functional Groups

Compound type	Functional group structure	Compound type	Functional group structure
Alcohol	— C−OH	Carbonyl	δ+ δ− C=0
Alkene	c=c	Carboxylic acid	-8+// -6
	Symmetrical, nonpolar		
Alkyl halide	$ \overset{\delta+}{\overset{\delta-}{X}}$	Carboxylic acid chloride	δ- δ+ C δ- CI
Amine	-C $-$ NH ₂	T	δ- δ+//
Ether	$-\begin{array}{c c} & & & & & & & \\ & & & & & \\ C & - & O & - & C \end{array}$	Thioester	
Thiol	δ+ δ− C−SH	Aldehyde	6+// H
Nitrile	-δ+ δ- -C≡N	Ester	δ- - δ+//
Grignard reagent	- $C - MgBr$		%− 0−c
Alkyllithium	— C − Li	Ketone	

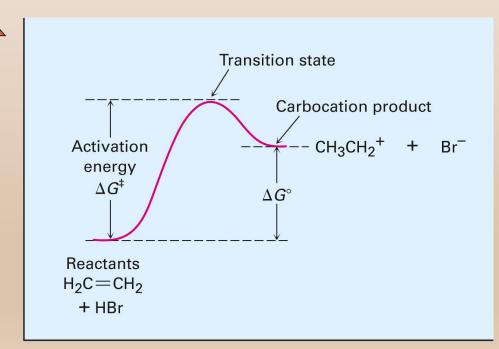
Polarized Reaction

<u>The Lewis acid</u>	<u>The Lewis base</u>
positive centerelectron poorthe electrophile	negative centerelectron richthe nucleophile

Arrows in Reaction Mechanism


- Keep a track of movement of electrons with arrows
- Always start from electron rich species (Lewis base)
- Always bring the arrow to electron poor species (Lewis acid)
- The atoms where the arrow starts and ends are the atoms that form a bond or break

Electrons usually flow *from* one of these nucleophiles.


Negatively charged Neutral
$$CH_3-\overset{\circ}{0}: + \overset{\circ}{H}-\overset{\circ}{Br}: + \overset{\circ}{Br}:$$

Kinetics

- Mechanisms in organic chemistry are explained by kinetics
- Transition states tell us what species are forming during the reaction
- Activation energy is the minimum energy required to get to the transition state
- Order of reaction tells us about the mechanism of the reaction.

Carbocation

Reaction progress ————

Key Words/Concepts

- Reaction Types
- Addition
- Elimination
- Substitution
- Rearrangement
- Polarity of bond
- Electrophile
- Nucleophile
- Heterolytic cleavage
- Homolytic cleavage
- Reaction mechanisms
- Transition states
- Activation energy