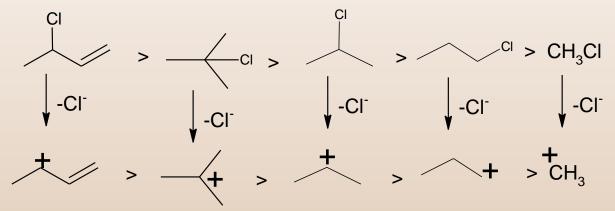
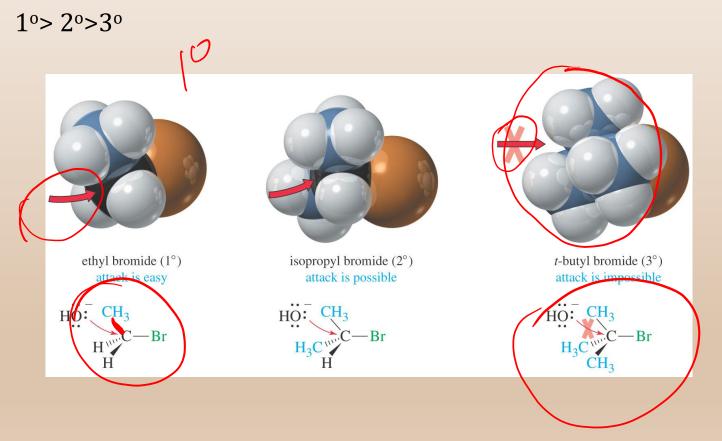
S_N² and S_N¹ 3 - Factors Affecting Substitution Reactions


Dr. Sapna Gupta

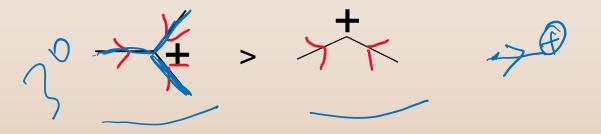
Factors Affecting S_N2 and S_N1 Reactions

- 1. Nature of the Substrate (Subs)
- 2. Strength of the Nucleophile (Nu⁻)
- 3. Leaving group ability (LG)
- 4. Solvent type

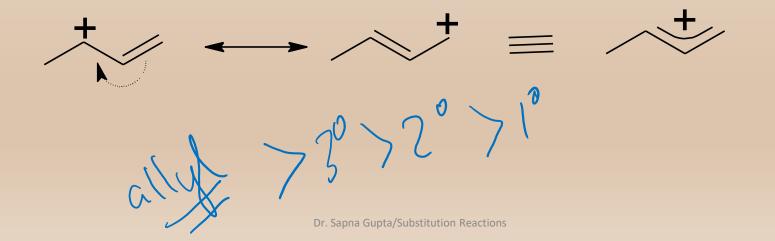
1) Nature of Substrate


Substrate can be 1°, 2°, 3° or allylic halide, to give the respective carbocation.

SN2	SN1
Mechanism involves back side attack, so it is important for a-carbon to be accessible.	<u>Mechanism</u> involves forming carbocation, so carbocation must be stable.
Steric hinderance: A carbon cannot be hindered (sterically hindered)	<u>Steric hinderance</u> is not a problem. Carbocation forms a trigonal planar shape hence accessibility is not a problem.
Stability of carbocation: $CH_3X >> 1^\circ > 2^\circ > 3^\circ$	Stability of carbocation: $C=C-C^+ > 3^\circ > 2^\circ > 1^\circ >> CH_3X$


1) Substrate..contd Steric Hindrance - 1

- Nucleophile approaches from the back side hence the electrophilic carbon should not be hindered.
- Best substrates for $S_N 2$ are primary halides.



1) Substrate...contd – Stability - 2

• Stability of tertiary carbocation is highest due to electron donation, inductive effect, of alkyl groups. More alkyl groups stabilize the carbocation more.

• Why is allyl cation more stable? Because of resonance. The hybrid shows the delocalization of the cation.

2) Nucleophilic Strength

- Nucleophile should be a stronger base/nucleophile than the leaving group.
- Strong bases are strong nucleophiles, but not all strong nucleophiles are basic*.
- Strength of Nu is based on:
 - <u>Charge</u>: In a conjugate acid-base pair, the base (anion) is stronger: OH⁻ > H₂O, NH₂⁻ > NH₃
 - <u>Periodicity</u>: Decreases left to right on the Periodic Table. More electronegative atoms less likely to form new bond: OH⁻ > F⁻, NH₃ > H₂O

 <u>Size</u>: Increases down Periodic Table, as size and polarizability increase: I⁻ > Br⁻ > Cl⁻

• Size and Inductive effect: E.g. EtO⁻ better than MeO⁻ due to higher electron density and inductive effect.

* Bases are characterised by their ability to abstract a proton while nucleophiles reacts with electrophiles.

2) Nucleophiles...contd – $S_N^1 vs S_N^2$

- <u>Size</u>: Larger nucleophiles are not good for S_N² because of steric hinderance. They will not be able to access the electrophilic carbon. E.g. EtO⁻ better than tBuO⁻ even though tBuO⁻ is a stronger base.
- <u>Strength</u>: For stronger Nu⁻ than LG is favorable for reaction. For S_N¹
 – strength of Nu⁻ does not matter, as it is not part of the rate
 determining step.

Some examples

moderate nucleophiles :Br:-
:NH ₃
CH ₃ — <u>S</u> —CH ₃
: <u>Ċ</u> l:-
ОШ
CH ₃ C ["] —Ö:-
weak nucleophiles :F:-
н—ё—н
СН ₃ —Ö—Н
P: NH

Dr. Sapha Gupta/Substitution Reactions

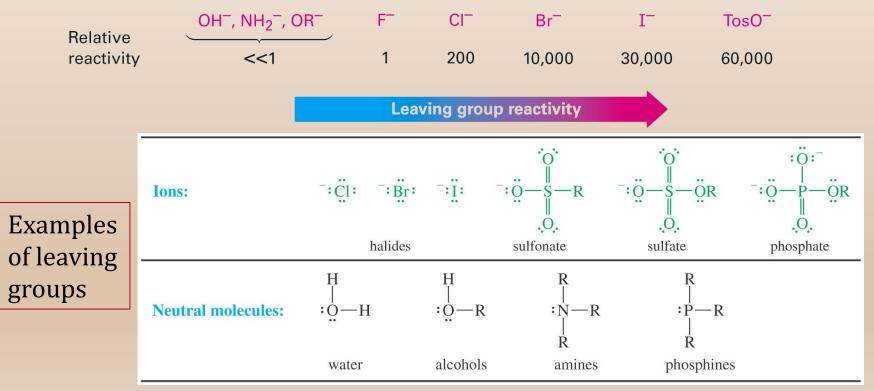
2) Nucleophile, contd....Making them

<u>Using Salts for Nu</u>

In case of simple Nu, like, I⁻ (NaI), SH⁻ (NaSH), CN⁻ (KCN), OH⁻ (NaOH) the ionic salts can be used. alk oxide

Using Alkoxides

 $CH_3O^{-}Na^{+}$, $CH_3CH_2O^{-}K^{+}$ - alkoxides are synthesized as salts – potassium or sodium. They are synthesized by dissolving solid sodium or potassium in the respective alcohol in a moisture and oxygen free environment.

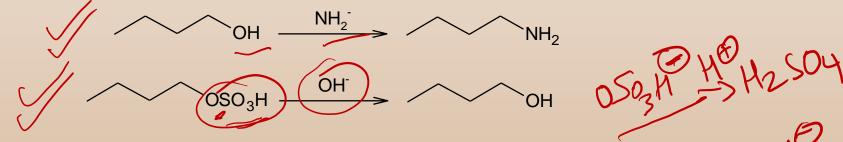

$$CH_3OH + Na \longrightarrow CH_3O^-Na^+ + H_2$$

$$CH_{3}OH + NaOH \longrightarrow CH_{3}ONa^{+} + H_{2}O(not favorable - why?)$$

• Nomenclature: CH₃O⁻Na⁺, sodium methoxide, CH₃CH₂O⁻K⁺ potassium ethoxide, (CH₃)₃CO⁻Na⁺ sodium t-butoxide

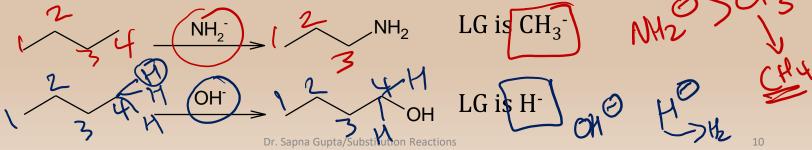
3) Leaving Group

- LG should be electron-withdrawing to provide an electrophilic carbon.
- It should be stable once it has left (a weak base <u>not</u> a strong base).
- Weaker base cannot displace stronger base (LG) in a S_N^2 reaction.
- Usually, halides are good LG.


3) Leaving Group...contd Reaction Examples

Examples:

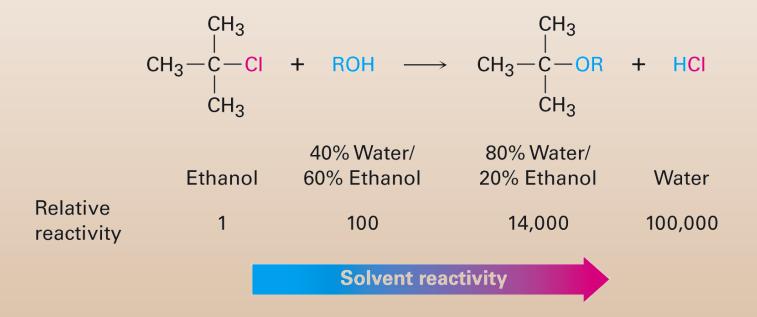
• OH⁻ can displace Br but Br cannot displace OH so the 2nd reaction will not occur as written.


• Both these reactions can occur as LG is weaker base than Nu⁻

OH

Br

• Some reactions will NOT occur as the LG is most strong of bases.


4) Solvents

There are 3 kinds of solvents: polar protic, polar aprotic and non polar

Solvent	Polar protic	polar aprotic	non polar
	Have an acidic proton	Polar solvent, no acidic proton	Non polar solvents
Examples	H ₂ O CH ₃ OH, CH ₃ CH ₂ OH	DMF (dimethyl formamide), DMSO (dimethyl sulfoxide) <i>Shown below</i> .	Hexane Toluene Diethyl ether Dichloromethane
Comments	Will form H-bonds with Nu and are good for S_N^1 since they will	Does not form H-bond with Nu but still helps to solvate ions hence the best kind for $S_N 2$	Not good for S_N^2 since they will not stabilize the ions formed.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	thylformamide Dimethyl sulfoxie DMF) (DMSO)	de Dimethylacetamide Hex (DMA)	amethylphosphoramide (HMPA)

4) Solvent...contd

Polar solvents help with ionization and stability of the carbocation.

$S_N 2 \text{ or } S_N 1?$

	S _N 2	S _N 1
Substrate	Primary or methyl	Tertiary
Nucleophile	Strong nucleophile	Weak nucleophile (may also be solvent)
Solvent	Polar aprotic solvent	Polar protic solvent, silver salts
Kinetics	[substrate][Nu]	[substrate]
Stereochemistry	Inversion	Racemic mixture
Rearrangement	No	Yes

Solved Problems

(R)-2-Chlorobutane

• Predict mechanism and stereochemistry of each product

Key Words/Concepts

- •Substitution Reaction
- •Nucleophile
- •Electrophile
- Leaving group
- •1st order reaction (unimolecular)
- •2nd order reaction (bimolecular)
- •Transition state
- •Rate determining step
- •Carbocation

- •Polar protic solvent
- •Polar aprotic solvent
- •Non polar solvent