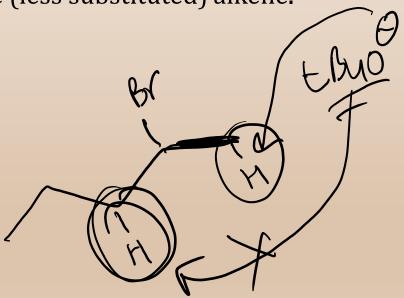
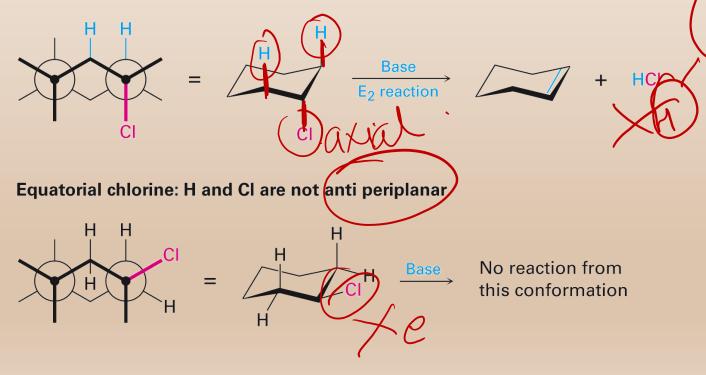

Alkenes 3- Elimination Other Considerations

Dr. Sapna Gupta

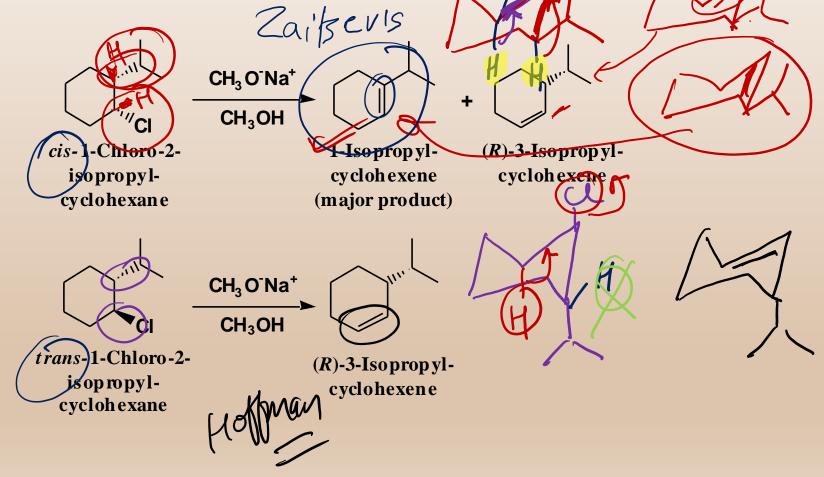

Regioselectivity - Zaitsev's Rule

- In the elimination of HX from an alkyl halide, the more highly substituted alkene product predominates.
- Occurs in E1 and E2

Regioselectivity - ...contd


- E1: major product is ALWAYS the more stable alkene (Zaitsev's product)
- E2: with strong base, the major product is the more stable (more substituted) alkene (Zaitsev's product).
- E2: with a strong, sterically hindered base such as *tert*-butoxide, the major product is often the less stable (less substituted) alkene.

Stereoselectivity –in E2 only


- E2 is most favorable (lowest activation energy) when M and LG are oriented anti and coplanar.
- In the examples below for anti periplanar elimination in cyclohexane, 81
 the equatorial groups are not in proper alignment for elimination.

Axial chlorine: H and Cl are anti periplanar

Problem

In a problem like below, where cis/trans isomerism is given, ALWAYS draw the conformers for the following cyclohexane stereorsomers to identify the antiperiplanar groups to eliminate.

Review – Synthesis of Alkenes

- Most synthesis of alkenes are elimination reactions.
 - Elimination dehydrohalogenation
 - Elimination dehydration
- Elimination gives two kinds of products
 - Zaitsev's product
 - Non-Zaitsev's product (Hoffman product)
- Anti periplanar elimination occurs in very specific conformations
- Rearrangements during carbocation transition state formation

Conditions of Elimination

Condition	E1	E2
Mechanism	1 st order	2 nd order
Rate	Dependent on only one chemical – the substrate	dependent on two chemicals – the substrate and Nu ⁻
Substrate	should form a stable carbocation, so 3°	should be 1º for better results
Bases	Does not need a strong base	Needs a strong base to cause elimination
Solvent	polar	Non polar
Competes	With S _N ¹	With S _N 2
Stereochemistry	Regiospecific (gives Zaitsev's product as major product)	Stereospecific (needs the H and leaving groups to be anti- periplanar)

Substitution or Elimination?

	Substitution	Elimination
Nucleophile strength	Strong Nubut weak base – S _N 2	Strong Nu – E2
Nucleophile size	Small	Bulky
Substrate	Primary – S _N 2	Tertiary - S _N 1, E1 or E2
Temperature		Higher temp - > more E

 $\frac{E2 \text{ vs } S_{N}2}{3^{\circ} \text{ halide and bulky base}}$ promote E2

 $\frac{E1 \text{ vs } S_{N}1}{\text{High heat promotes E1}}$

Types of Alkyl Halides

- 1° will almost always give S_N^2
- 2° primarily S_N2 except when using a bulky base
- 3° S_N1, E1 or E2. Strong base and high temperature promotes E

Substitution or Elimination?

Look at the conditions and then decide.

- Primary substrate
 - If the base is small, $S_{\rm N}2$ competes strongly because approach at carbon is unhindered

$$CH_{3}CH_{2}O^{-}Na^{+} + CH_{3}CH_{2}Br \xrightarrow{C_{2}H_{5}OH} CH_{3}CH_{2}OCH_{2}CH_{3} + CH_{2} = CH_{2}$$

$$(-NaBr) \xrightarrow{S_{N}2} E2$$

$$(90\%) (10\%)$$

- Secondary substrate
 - Approach to carbon is sterically hindered and E2 elimination is favored

$$\begin{array}{c} \mathbf{CH_{3}CH_{2}O^{-}Na^{+}} + \mathbf{CH_{3}CHCH_{3}} \xrightarrow{\mathbf{C_{2}H_{5}OH}} \mathbf{CH_{3}CHCH_{3}} + \mathbf{CH_{2}=CHCH_{3}} \\ \mathbf{Br} & \xrightarrow{\mathbf{OCH_{2}CH_{3}}} \mathbf{OCH_{2}CH_{3}} \\ \mathbf{S_{N}2} & \mathbf{E2} \\ (\mathbf{21\%}) & (\mathbf{79\%}) \end{array}$$

Key Words/Concepts

- Dehydrohalogenation
- Dehydration of alcohols
- Zaitsev's and Hoffman's product
- Anti coplanar elimination
- Stability of carbocation
- Rearrangement of carbocation intermediate
- Hydride, methyl and phenyl group shifts