
Alkene Reactions 2- Addition Reactions – Synthesis of Alcohols

Dr. Sapna Gupta

All Reactions

General Mechanism

- The alkene is the nucleophile.
- The reagent is the electrophile

$$C = C + A - B \xrightarrow{\text{addition}} A - C - C - E$$

Electrophile Nucleophile

 Alkene types: symmetric – where alkene has equal number of carbons on the double bond and asymmetric where one carbon of the double bond has less carbons.

Hydration – 1 – Addition of H₂O

- Hydration of an alkene is the addition of H-OH to give an alcohol
- Acid catalysts are used in high temperature industrial processes: ethylene is converted to ethanol
- HOH adds in accordance with *Markovnikov's rule*.

CH₃CH=CH₂ + H₂O
$$\xrightarrow{\text{H}_2SO_4}$$
 CH₃CH-CH₂
Propene 2-Propanol

Hydration - Mechanism

- Markovnikov's addition
- Note: rearrangement can occur where applicable

$$CH_3 \longrightarrow CH_2 + HOH \xrightarrow{H_3O^+} CH_3 \longrightarrow CH_2 - H$$

$$CH_3 \longrightarrow CH_3 - CH_3 - H$$

$$CH_3 \longrightarrow CH_3 - H$$

$$CH_$$

$$\begin{array}{c} CH_2 \\ H_3C \end{array} + \begin{array}{c} H \\ CH_3 \end{array} + \vdots \\ H_3C - CH_3 \end{array} + \vdots \\ H_3C - CH_3 \end{array} + \vdots \\ CH_3 + \vdots \\ CH_$$

Hydration – 2 – Oxymercuration

- Markovnikov's addition
- There is no rearrangement (unlike acid catalyzed hydration)
- Reagent is Hg(OAc)₂ followed by NaBH₄ and OH⁻/H₂O

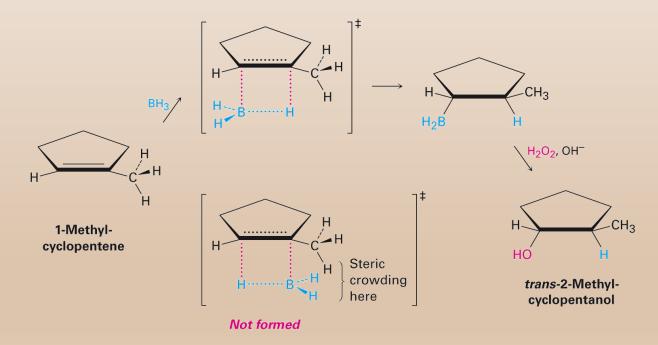
$$CH_{3}(CH_{2})_{2}CH = CH_{2} \xrightarrow{Hg(OAc)_{2}} CH_{3}(CH_{2})_{2}CH - CH_{2} \xrightarrow{NaBH_{4}} CH_{3}(CH_{2})_{2}CHCH_{3} + Hg$$

$$OH \qquad HgOAc \qquad OH$$
1-Pentene
2-Pentanol
(93%)

Mechanism (*trans or anti addition* – H and OH are on the opposite sides)

Hydration – 3 – Hydroboration

- Anti-Markovnikov's addition
- Needs borane reagent (BH₃:THF where THF is the solvent that stabilizes the BH₃) followed by OH⁻/H₂O₂ (hydrogen peroxide)
- **SYN addition** (addition on same side)


$$CH_3 \xrightarrow{(1) \text{ BH}_3: \text{THF}} CH_3$$

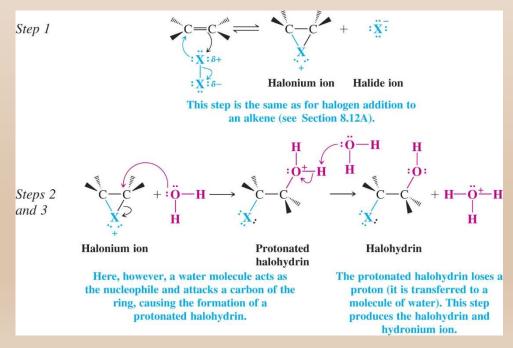
$$H OH$$

$$OH$$

Hydration - Hydroboration Mechanism

- Borane is a Lewis acid
- Alkene is Lewis base
- Transition state involves BH₃ adding across C=C
- More stable carbocation is also consistent with steric preferences

Halohdyrins from Alkenes

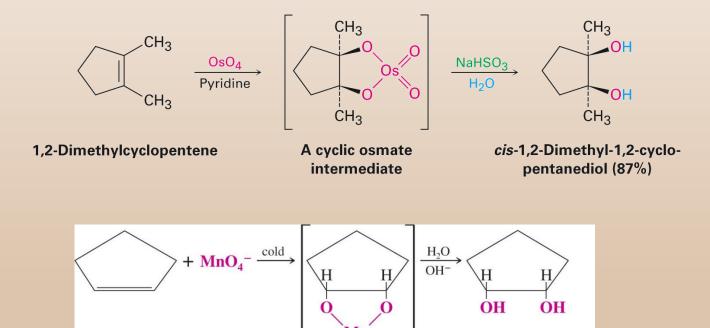

• This is formally the addition of HO-X to an alkene to give a 1,2-halo alcohol, called a halohydrin. *Addition is ANTI*.

• The actual reagent is the dihalogen (Br₂ or Cl₂) in water in an organic

solvent)

$$C = C + X_2 + H_2O \longrightarrow -C - C - + -C - C - + HX$$

$$X = Cl \text{ or Br} \qquad Halohydrin \qquad vic-Dihalide \qquad (minor)$$

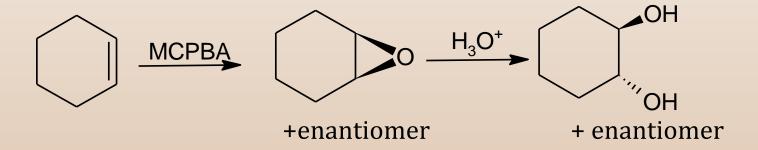

Halohydrin - 2

- In unsymmetrical alkenes, the bromonium ion will have some of its δ + charge density on the most substituted of the two carbons
 - The most substituted carbon can best accommodate δ + charge
- The water nucleophile will tend to react at the carbon with the most δ + charge i.e. the more substituted carbon.

$$C = CH_{2} \xrightarrow{\mathbf{Br}_{2}} CH_{3} \xrightarrow{\delta+} C \xrightarrow{CH_{2}} CH_{2} \xrightarrow{\bullet+} CH_{3} \xrightarrow{C} CH_{2} \xrightarrow{\bullet+} CH_{3} \xrightarrow{CH_{3}} CH_{3} CH_{3} \xrightarrow{CH_{3}} CH_{3} CH$$

Diols from Alkenes

- Hydroxylation addition is SYN
- Osmium tetroxide, then sodium bisulfite
- Can also use KMnO₄ (cold) (QUALITATIVE TEST)


cis-1,2-Cyclopentanediol (a meso compound)

Epoxide Formation

- Epoxidation results in a cyclic ether with an oxygen atom
- Reagent is CH₃COOOH or any peracid (meta perbenzoic acid MCPBA is a common acid)
- Stereochemistry of addition is SYN

Diol Formation

- Dihydroxylation addition is ANTI
- Form and epoxide and then treat with weak acid or base to give the diol.

Location of Groups

Vicinal

On adjacent carbons (1,2)

Geminal

On the same carbon (1,1 or 2,2)

Key Words/Concepts

- Electrophilic addition
- Markovnikov's addition
- Syn addition
- Anti addition
- Hydration (water-acid, oxymercuration and hydroboration)
- Halohydrin
- Epoxides
- Diols