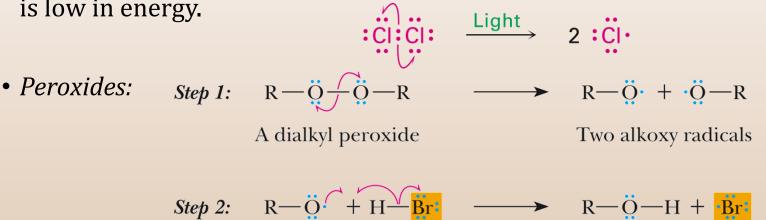
Free Radical Reactions 1 - Mechanisms

Dr. Sapna Gupta


Radical Reactions

• Radicals are formed from homolytic cleavage.

- This breakage requires energy.
- Bond energy is an important consideration weaker bonds require less energy and will react easily, e.g. H-Cl easier to break than H-F.
- Radicals are high in energy therefore reactive.
- Free radical mechanism involves three steps:
 - Initiation (needs an initiator)
 - Propagation
 - Termination (needs a terminator or quencher)

Radical Reactions – Mechanism 1

 Initiation – homolytic formation of two reactive species with unpaired electrons. Peroxides are also good initiators as the O-O bond is low in energy.

 Propagation – reaction with molecule to generate radical. There has to be a radical in the product. Example - reaction of chlorine atom with methane to give HCl and CH₃.

(a)
$$: \overrightarrow{CI} \cdot + H: \overrightarrow{CH}_3 \longrightarrow H: \overrightarrow{CI}: + \cdot CH_3$$

(b) $: \overrightarrow{CI}: \overrightarrow{CI}: + \cdot CH_3 \longrightarrow : \overrightarrow{CI} \cdot + : \overrightarrow{CI}: CH_3$

Radical Reactions – Mechanism 2

- Termination combination of two radicals to form a stable product.
- The key point is that there should no radical in the products.
- Example:

Possible termination steps

Radical Mechanism

Here is a summarized version of the mechanism.

Initiation step

$$CI \xrightarrow{h\nu}$$
 2 CI.

Propagation steps (a repeating cycle)

Termination steps

Overall reaction

 $\left(\begin{array}{c}
H_{3}C-H\\
+\\
CI\cdot\\
+\\
H_{3}C\cdot\\
+\\
H_{3}C\cdot\\
+\\
CI-CI\\
CI-CI\\
\end{array}\right)$ $\begin{cases} H_3C \cdot + \cdot CH_3 \longrightarrow H_3C - CH_3 \\ CI \cdot + \cdot CH_3 \longrightarrow CI - CH_3 \\ CI \cdot + \cdot CI \longrightarrow CI - CI \end{cases}$ \longrightarrow CH₃Cl + HCl CH_4 + Cl_2

Reaction Energetics

- Atoms have higher energy (are less stable) than the molecules they can form (The formation of covalent bonds is exothermic)
- Breaking covalent bonds requires energy (i.e. is endothermic)

 $H \longrightarrow H \cdot + H \cdot \qquad \Delta H^{\circ} = +436 \text{ kJ mol}^{-1}$ Cl -- Cl -

- A Cl-Cl bond requires less energy than H-H bond; due to bond energy.
- It is easier to form a more stable radical e.g. isopropyl than a propyl radical; this is due to stability of the radical.

 $\begin{array}{cccc} \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{2} &\longrightarrow \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{2}\cdot + \mathrm{H} \cdot & \Delta H^{\circ} = +423 \ \mathrm{kJ \ mol^{-1}} \\ & & \mathbf{Propyl \ radical} \\ & & (a \ 1^{\circ} \ radical) \end{array} \\ & & \mathrm{CH}_{3}\mathrm{CHCH}_{3} &\longrightarrow \mathrm{CH}_{3}\mathrm{CHCH}_{3} + \mathrm{H} \cdot & \Delta H^{\circ} = +413 \ \mathrm{kJ \ mol^{-1}} \\ & & \mathrm{H} & & \mathbf{Isopropyl \ radical} \\ & & & (a \ 2^{\circ} \ radical) \end{array}$

Bond Energies

- We can calculate the energetics of a reaction hence the products can be predicted.
- It is useful information to also chose the right starting materials for a reaction. E.g. a Br-Br bond easier to break than a Cl-Cl bond so Br₂ is a better halogenation initiator.

$A \colon B \longrightarrow A \cdot + B \cdot$				
Bond Broken (shown in red)	kJ mol ⁻¹	Bond Broken (shown in red)	kJ mol ^{−1}	
Н—Н	436	(CH ₃) ₂ CH—Br	298	
D—D	443	(CH ₃) ₂ CH—I	222	
F—F	159	(CH ₃) ₂ CH—OH	402	
CI-CI	243	$(CH_3)_2CH - OCH_3$	359	
Br—Br	193	(CH ₃) ₂ CHCH ₂ —H	422	
1-1	151	(CH ₃) ₃ C—H	400	
H—F	570	(CH ₃) ₃ C—Cl	349	
H—CI	432	(CH ₃) ₃ C—Br	292	
H—Br	366	(CH ₃) ₃ C—I	227	
H—I	298	(CH ₃) ₃ C—OH	400	
CH₃—H	440	$(CH_3)_3C - OCH_3$	348	
CH ₃ —F	461	$C_6H_5CH_2-H$	375	
CH ₃ —CI	352	CH ₂ =CHCH ₂ -H	369	
CH ₃ —Br	293	CH ₂ =CH-H	465	
CH ₃ —I	240	C ₆ H ₅ —H	474	
CH₃—OH	387	HC=C-H	547	
CH ₃ —OCH ₃	348	CH ₃ —CH ₃	378	
CH ₃ CH ₂ —H	421	$CH_3CH_2-CH_3$	371	
CH ₃ CH ₂ —F	444	$CH_3CH_2CH_2-CH_3$	374	
CH ₃ CH ₂ —Cl	353	CH_3CH_2 — CH_2CH_3	343	
CH ₃ CH ₂ —Br	295	(CH ₃) ₂ CH—CH ₃	371	
CH ₃ CH ₂ —I	233	(CH ₃) ₃ C—CH ₃	363	
CH ₃ CH ₂ —OH	393	HO—H	499	
$CH_3CH_2 - OCH_3$	352	HOO—H	356	
$CH_3CH_2CH_2-H$	423	HO—OH	214	
$CH_3CH_2CH_2-F$	444	$(CH_3)_3CO-OC(CH_3)_3$	157	
CH ₃ CH ₂ CH ₂ —Cl	354	O O		
CH ₃ CH ₂ CH ₂ —Br	294	C ₆ H ₅ CO—OCC ₆ H ₅	139	
CH ₃ CH ₂ CH ₂ —I	176	$CH_3CH_2O-OCH_3$	184	
CH ₃ CH ₂ CH ₂ —OH	395	$CH_3CH_2O-OCH_3$ CH_3CH_2O-H	431	
$CH_3CH_2CH_2-OCH_3$	355	0	401	
(CH ₃) ₂ CH—H	413			
(CH ₃) ₂ CH—F	439	CH₃Ċ—H	364	
$(CH_3)_2CH-CI$	355			

^aData compiled from the National Institute of Standards (NIST) Standard Reference Database Number 69, July 2001 Release, accessed via NIST Chemistry WebBook (http://webbook.nist.gov/chemistry/) and the CRC Handbook of Chemistry and Physics, 3rd Electronic Edition (updated from content in the 81st print edition), accessed via Knovel Engineering and Scientific Online References (http://www.knovel.com). DH° values were obtained directly or calculated from heat of formation (H_i) data using the equation $DH^{\circ}[A--B] = H_i[A] + H_i[B - H_i[A--B]$.

Comparison of Halogenation

The order of reactivity is based on the values of $E_{\rm act}$ for the first step of chain propagation and ΔH^o for the entire chain propagation

- **Fluorination** has a very low value for E_{act} in the first step and ΔH^{o} is extremely exothermic therefore fluorination reactions are explosive
- Chlorination and bromination have increasingly higher values of E_{act} and lower overall ΔH^o values which makes these halogenation reactions less vigorous
- *Iodinination* has a prohibitively high value for E_{act} of the first step and the reaction does not occur

Dr. Sapna Gupta/Free

FLUORINATION

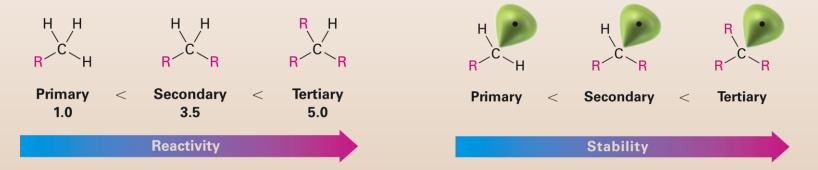
	ΔH° (kJ mol ⁻¹)	$E_{ m act}$ (kJ mol ⁻¹
Chain Initiation		
$F_2 \longrightarrow 2 F \cdot$	+159	+159
Chain Propagation		
$F \cdot + CH_4 \longrightarrow HF + CH_3 \cdot$	-130	+5.0
$CH_3 \cdot + F_2 \longrightarrow CH_3F + F \cdot$	-302	Small
Overall	$1 \Delta H^{\circ} = -432$	
CHL	ORINATION	
	ΔH° (kJ mol ⁻¹)	$E_{\rm act}$ (kJ mol ⁻¹
Chain Initiation		
$Cl_2 \longrightarrow 2 Cl$ ·	+243	+243
Chain Propagation		
$Cl \cdot + CH_4 \longrightarrow HCl + CH_3 \cdot$	+8	+16
CH_3 · + $Cl_2 \longrightarrow CH_3Cl + Cl$ ·	-109	Small
Overal	$1 \Delta H^{\circ} = -101$	
BRO	OMINATION	
	ΔH° (kJ mol ⁻¹)	$E_{\rm act}$ (kJ mol ⁻
Chain Initiation		
$\operatorname{Br}_2 \longrightarrow 2 \operatorname{Br} \cdot$	+ 193	+193
Chain Propagation		
$Br \cdot + CH_4 \longrightarrow HBr + CH_3 \cdot$	+74	+78
CH_3 · + $Br_2 \longrightarrow CH_3Br + Br$ ·	-100	Small
Overa	all $\Delta H^\circ = -26$	
ΙΟ	DINATION	
	ΔH° (kJ mol ⁻¹)	$E_{\rm act}$ (kJ mol ⁻¹
Chain Initiation		
$I_2 \longrightarrow 2 I \cdot$	+151	+151
Chain Propagation		
$I \cdot + CH_4 \longrightarrow HI + CH_3 \cdot$	+142	+140
$CH_3 \cdot + I_2 \longrightarrow CH_3I + I \cdot$		Small
Over	all $\Delta H^\circ = +53$	

Radical Reactions - Properties

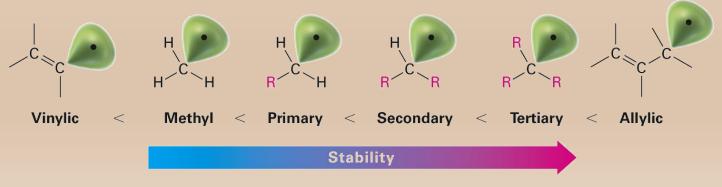
- Alkane + Cl₂ or Br₂, heat or light replaces C-H with C-X but gives mixtures
 - Hard to control
 - Via free radical mechanism
- It is usually not a good idea to plan a synthesis that uses this method

$$CH_{4} + Cl_{2} \xrightarrow{h\nu} CH_{3}Cl + HCl$$

$$\downarrow Cl_{2} \rightarrow CH_{2}Cl_{2} + HCl$$

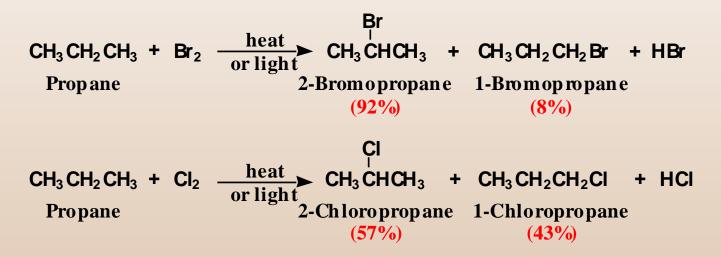

$$\downarrow Cl_{2} \rightarrow CHCl_{3} + HCl$$

$$\downarrow Cl_{2} \rightarrow CHCl_{3} + HCl$$


$$\downarrow Cl_{2} \rightarrow CCl_{4} + HCl$$

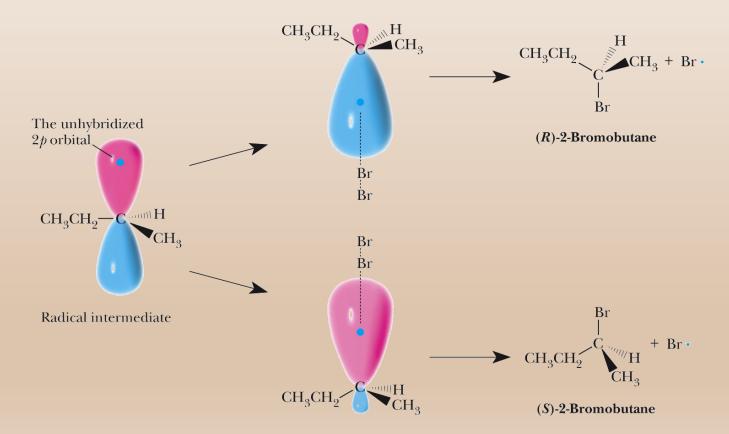
Reactivity of Radicals

• Based on quantitative analysis of reaction products, relative reactivity of radical intermediates are estimated

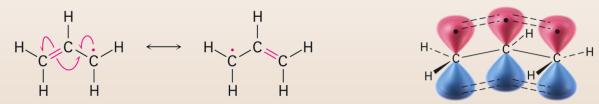


• Allylic radical is stabilized by resonance, hence even more stable than tertiary radical.

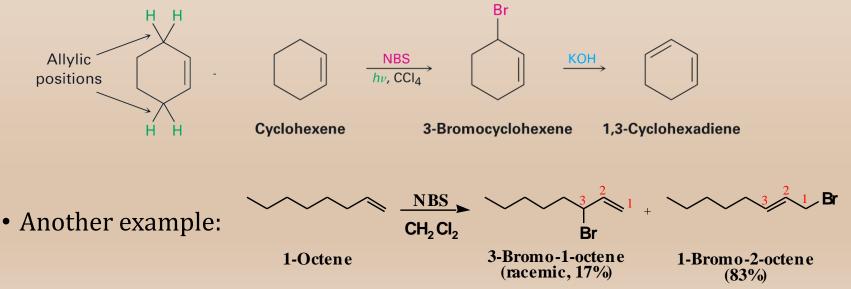
Regioselectivity


• Reaction is more selective with bromine than chlorine

- Regioselectivity is 3° > 2° > 1°.
 - for bromination, approximately 1600:80:1
 - for chlorination, approximately 5:4:1


Stereochemistry

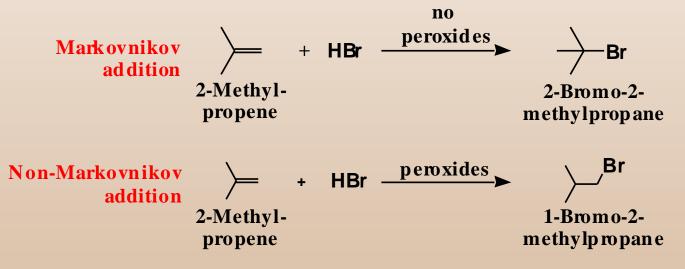
- The carbon radical is sp2 hybridized therefore trigonal planar.
- The reagent radical (Br or Cl) can approach from above or below the plane thus the product is a racemic mixture.



Allylic Radical

• Three electrons are delocalized over three carbons

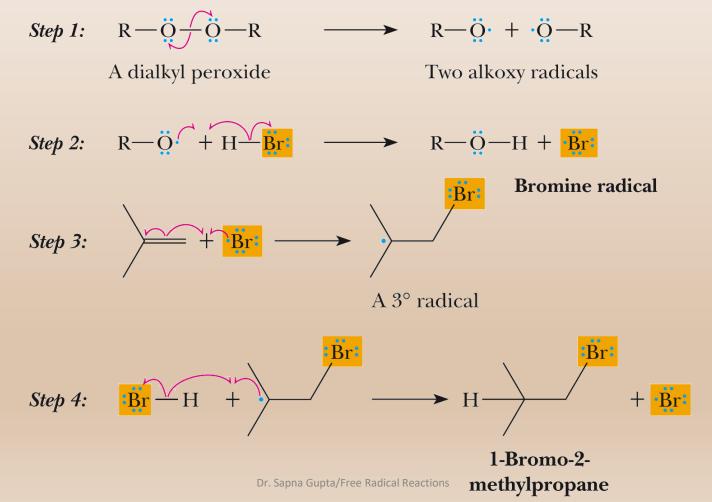
- Allylic bromination with NBS creates an allylic bromide
- Reaction of an allylic bromide with base produces a conjugated diene, useful in the synthesis of complex molecules



Chain Reaction

- Chain reactions are also another name for propagation steps
- Once the radicals are formed it is hard to control their reactions
- Chain reactions can be stopped only by terminators or quenchers (or removing the energy source)

Radical Addition on Alkenes


- Addition of HBr to alkenes gives either Markovnikov addition or anti-Markovnikov addition depending on reaction conditions.
 - Markovnikov addition occurs when radicals are absent.
 - non-Markovnikov addition occurs when peroxides or other sources of radicals are present.

• Addition of HCl and HI is only Markovnikov's addition.

Mechanism of Alkene Radical Reaction

- The key difference in the mechanism is in the chain propagation.
- Adding Br radical on the less substituted carbon gives a more stable radical.

Key Concepts

- Synthesis of alkyl halides from
 - Alkenes
 - Alkynes
 - Alkanes
- Free radical reactions
 - Homolytic cleavage
 - Initiation
 - Propagation
 - Termination
- Stability of radicals
- Energetics of reactions
- Regioselectivity of bromine (NBS)
- Allyl radical and resonance
- Chain reaction