Free Radical Reactions 2 - Alkyl Halide Synthesis

Dr. Sapna Gupta

Synthesis – From Alkenes

• Hydrohalogenation of alkene (Markovnikov's addition)

• Halogenation of alkenes (anti addition)

Synthesis – From Alkynes

• Hydrohalogenation of alkynes (Markovnikov's addition)

$$C_{4}H_{9}C \equiv CH \xrightarrow{HBr} C_{4}H_{9} \xrightarrow{-} C = CH_{2} \xrightarrow{HBr} C_{4}H_{9} \xrightarrow{-} C \xrightarrow{-} CH_{3}$$

Br Br Br Br 2-Bromo-1-hexene 2,2-Dibromohexane

Halogenation of alkynes

Synthesis – From Alkanes

- Alkanes can be halogenated by substitution reaction.
- The mechanism is free radical.
- It requires heat or some energy to get started

Radical Addition on Alkenes

- Addition of HBr to alkenes, in presence of energy (free radical reaction), gives anti-Markovnikov addition (*H goes to C with less H*).
 - Markovnikov addition occurs when radicals are absent.
 - Anti-Markovnikov addition occurs when peroxides or other sources of radicals are present.
- Note: Addition of HCl and HI is only Markovnikov's addition.

Radical Allylic Substitution on Alkenes

Alkenes undergo allylic substation on addition of Br₂, in presence of energy (free radical mechanism). (Allylic position is the 3rd carbon from the start of the double bond, in the structure below it is marked 3*)

• This substitution can be achieved by using N-bromosuccinimide (NBS). It works also in the free radical mechanism. (*The * carbons are the allylic positions*.)

Key Concepts

- Synthesis of alkyl halides from
 - Alkenes
 - Alkynes
 - Alkanes
- Regioselectivity of bromine (NBS)
- Allyl radical and resonance