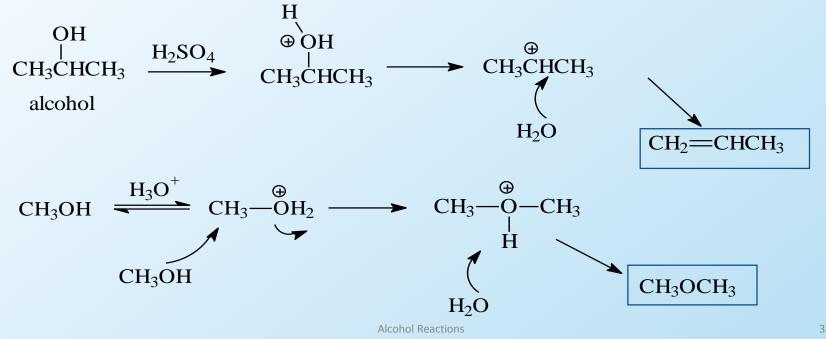
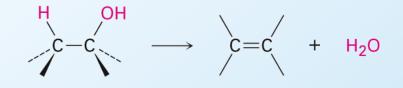
Alcohols Reactions

Dr. Sapna Gupta

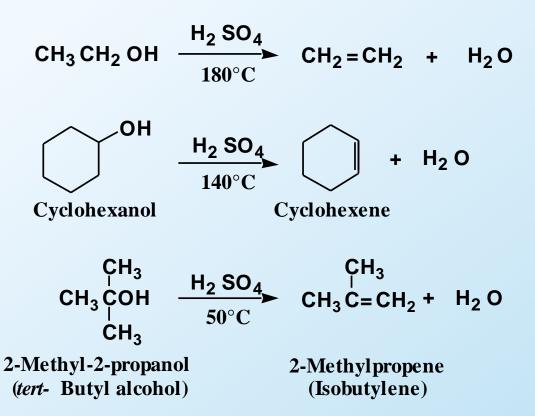
Types of Alcohol Reactions


- Dehydration to alkene
- Substitution to form alkyl halide
- Tosylation
- Oxidation


Dehydration Reactions

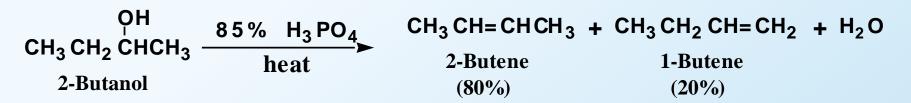
- Conc. H₂SO₄ produces alkene via E1.
- Carbocation is the intermediate.
- Rearrangement can also occur.
- Zaitsev product is predominant.

• High temp, 180°C and above, favors alkene (elimination)

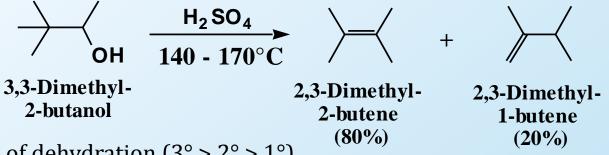


Dehydration Contd...

• Primary Alcohols

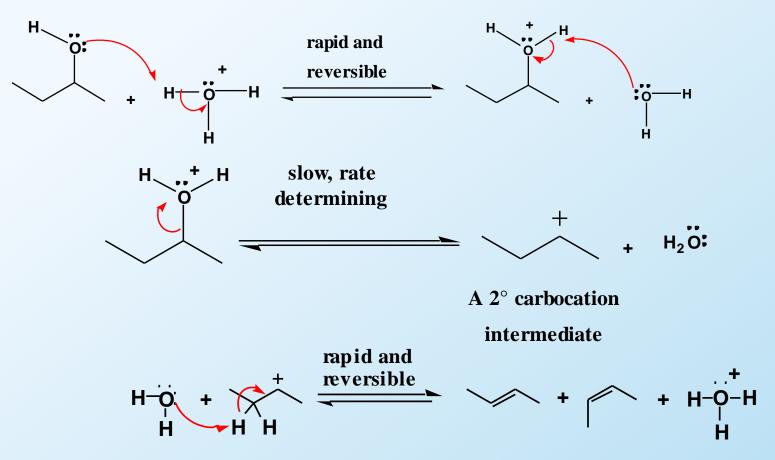

• Secondary Alcohols

• Tertiary Alcohols

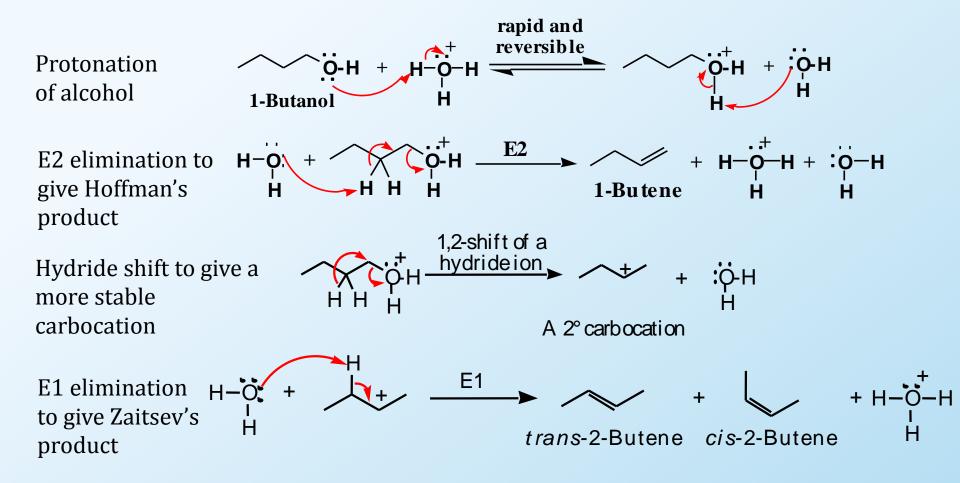


Dehydration Contd...

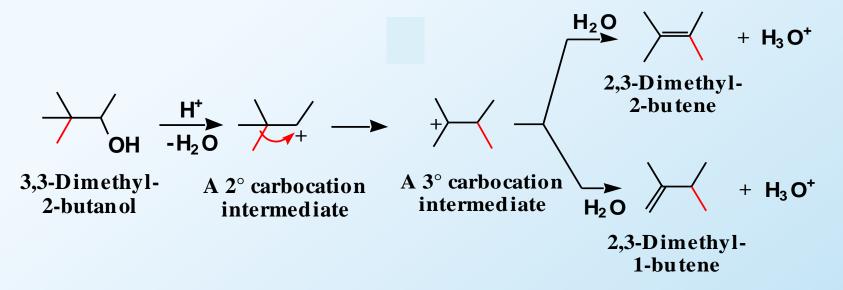
• Where possible, the alkene having the greater number of substituents on the double bond (the more stable alkene) is the major product (Zaitsev rule).


• Dehydration of 1° and 2° alcohols may give rearranged alkenes.

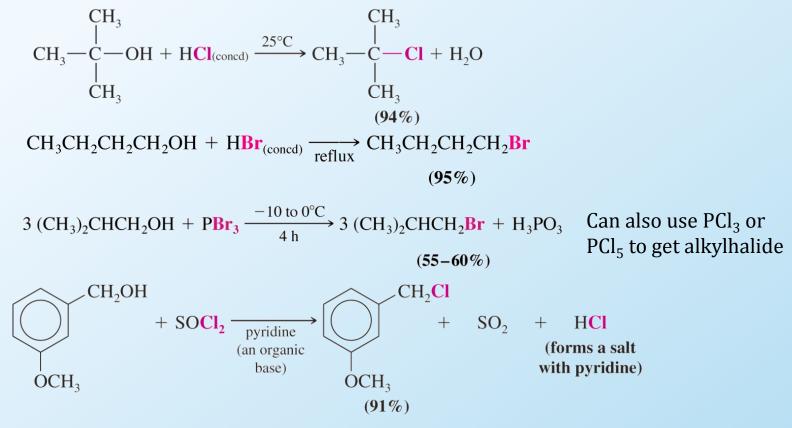
• Ease of dehydration (3° > 2° > 1°)


Dehydration - Mechanism

Protonation of alcohol followed by formation of carbocation (*this is where rearrangement can occur*) and finally elimination step (*this is where Zaitsev's product is formed*) gives the alkene.


Dehydration – Zaitsev's Product

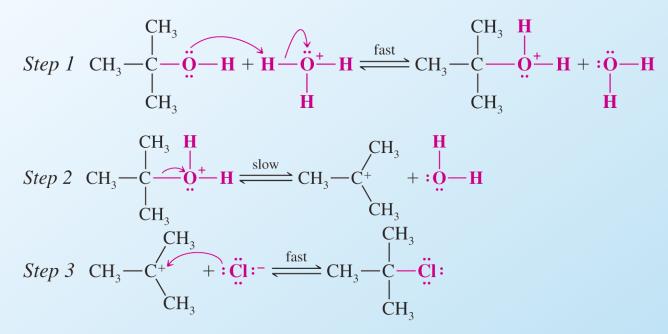
• Primary alcohols give Zaitsev's (from hydride shift) and Hoffman's product (by regular E2 mechanism).


Dehydration - Rearrangement

• This is usually for secondary alcohols and can involve a hydride or methyl shift.

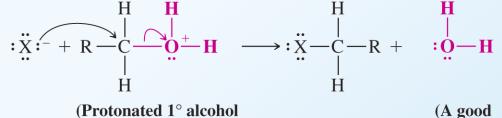
Alkyl Halides from Alcohols

- Hydroxyl groups are poor leaving groups, and as such, are often converted to alkyl halides when a good leaving group is needed
- Three general methods exist for conversion of alcohols to alkyl halides, depending on the classification of the alcohol and the halogen desired. Reagents used are: hydrogen halides, phosphorus tribromide and thionyl chloride.


Reaction with Hydrogen Halide contd..

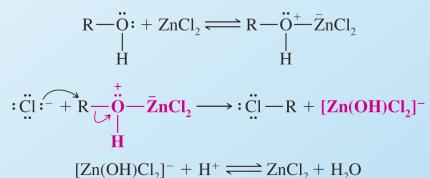
The order of reactivity is as follows

- Hydrogen halide HI > HBr > HCl > HF
- Type of alcohol $3^\circ > 2^\circ > 1^\circ <$ methyl


Mechanism of the Reaction of Alcohols with HX:

- S_N1 mechanism for 3°, 2°, allylic and benzylic alcohol.
- These reactions are prone to carbocation rearrangements

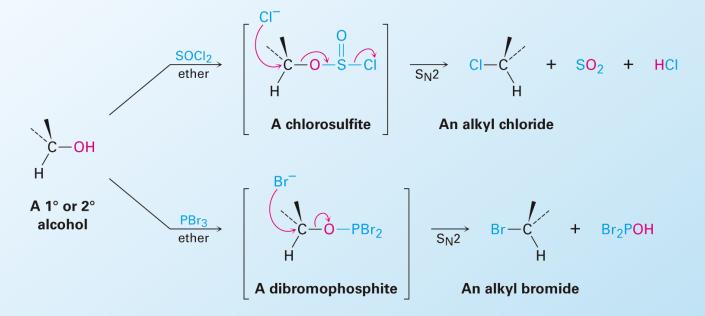
Reaction with Hydrogen Halide contd..


• Primary and methyl alcohols undergo substitution by an S_N2 mechanism

or methanol)

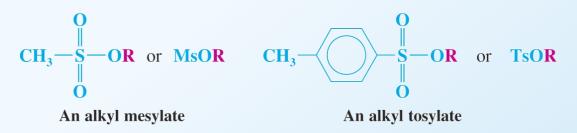
(A good leaving group)

- Reaction with HCl
- Add ZnCl₂, which bonds strongly with -OH, to promote the reaction.
- The chloride product is insoluble.
- Lucas test: ZnCl₂ in conc. HCl
 - 1° alcohols react slowly or not at all.
 - 2° alcohols react in 1-5 minutes.
 - 3° alcohols react in less than 1 minute.
- Limitation: Carbocation intermediate may rearrange.



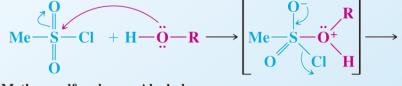
Reaction with PCl₅ and SOCl₂

- Good yields with 1° and 2° alcohols
- PCl₃ for alkyl chloride (but SOCl₂ better)
- PBr₃ for alkyl bromide
- Mechanism is $S_N 2$ no rearrangement
- P and I₂ for alkyl iodide (PI₃ not stable)


$$3 R + OH + PBr_3 \longrightarrow 3 R - Br + H_3PO_3$$

(1° or 2°)

 $R - OH + SOCl_2 \xrightarrow{\text{reflux}} R - Cl + SO_2 + HCl$ (1° or 2°)



Tosylates and Mesylates

• The hydroxyl group of an alcohol can be converted to a good leaving group by conversion to a sulfonate ester.

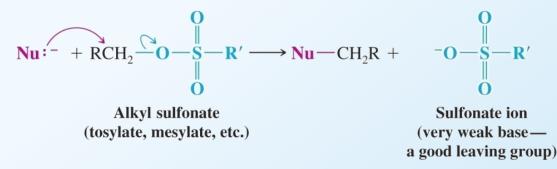
- Sulfonyl chlorides are used to convert alcohols to sulfonate esters
- Base is added to react with the HCl generated

Methanesulfonyl Alcohol chloride

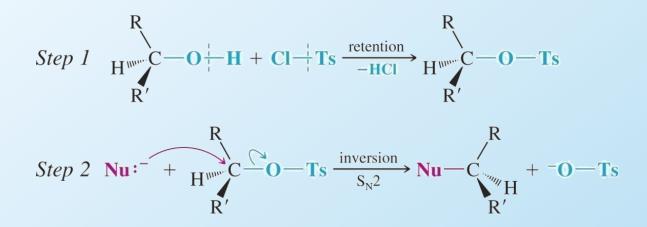
sulfur The in

The alcohol oxygen attacks the sulfur atom of the sulfonyl chloride.

The intermediate loses a chloride ion.

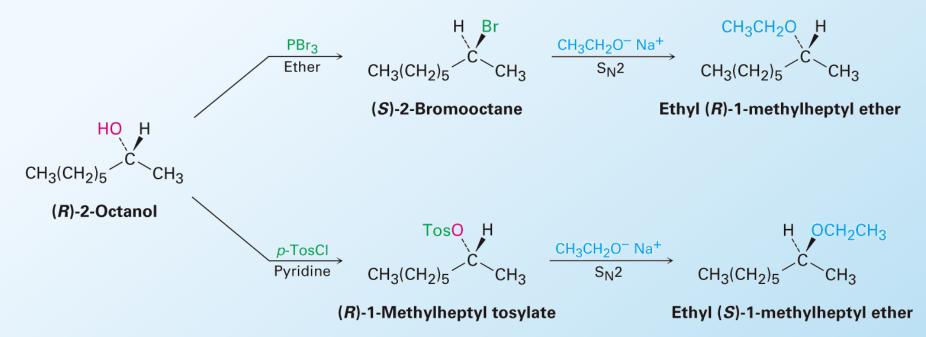


(a base) Alkyl methanesulfonate Loss of a proton leads to the product.


Alcohol Reactions

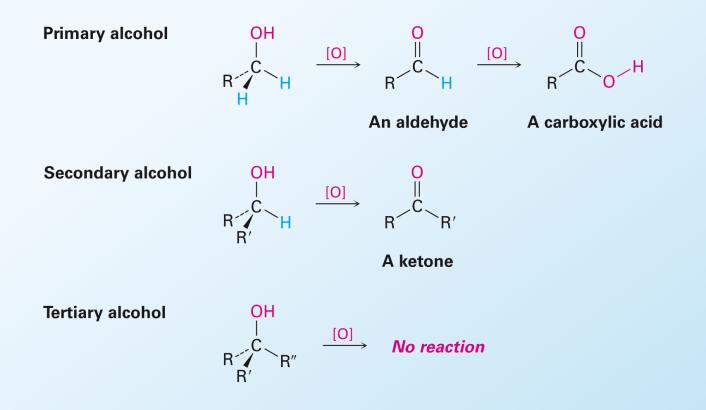
Tosylates and Mesylates contd..

• A sulfonate ion (a weak base) is an excellent leaving group



• If the alcohol hydroxyl group is at a stereo center then the overall reaction with the nucleophile proceeds with inversion of configuration (S_N2). The second step to form a sulfonate ester proceeds with retention of configuration.

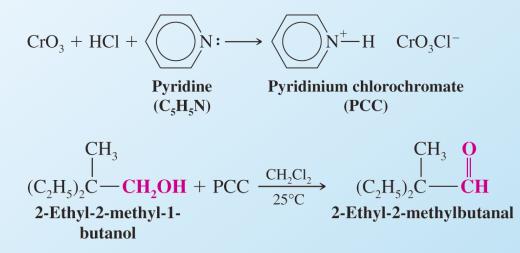
Stereochemistry of Tosylates


- The S_N^2 reaction of an alcohol via an alkyl halide proceeds with *two* inversions, giving product with same arrangement as starting alcohol
- The $\rm S_N2$ reaction of an alcohol via a tosylate, produces inversion at the chirality center

S_N2 Reactions of Tosylates

SUMMARY S _N 2 Reactions of Tosylate Esters								
With hydroxide produces alcohol	R—OTs	+	$\stackrel{-}{OH} \longrightarrow \stackrel{R}{\longrightarrow} \stackrel{OH}{alcohol} + \stackrel{-}{OTs}$					
With cyanide produces nitrile	R—OTs	+	$C \equiv N \longrightarrow R - C \equiv N + OTs$ cyanide					
With halide ion produces alkyl halide	R—OTs	+	$\operatorname{Br}^{-}_{\operatorname{halide}} \longrightarrow \operatorname{R-Br}_{\operatorname{alkyl halide}} + \operatorname{OTs}_{\operatorname{OTs}}$					
With alkoxide ion produces ether	R—OTs	+	$R' \longrightarrow R \longrightarrow R \longrightarrow R' + OTs$ alkoxide					
With ammonia produces amine salt	R—OTs	+	$: NH_3 \longrightarrow R - NH_3^+ OTs$ ammonia amine salt					
With LiAlH ₄ produces alkane	R—OTs	+	$\underset{\text{LAH}}{\text{LiAH}_4} \longrightarrow \underset{\text{alkane}}{\text{R-H}} + -OTs$					

Oxidation of Alcohols


Oxidation of Alcohols contd..

Oxidation of Primary Alcohols to Aldehydes

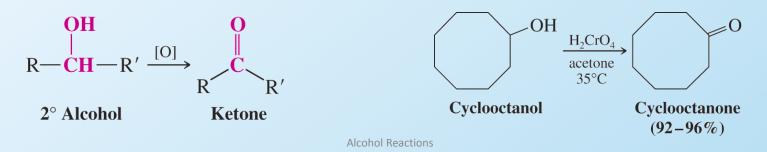
 A primary alcohol can be oxidized to an aldehyde or a carboxylic acid. The oxidation is difficult to stop at the aldehyde stage and usually proceeds to the carboxylic acid

• A reagent which stops the oxidation at the aldehyde stage is pyridinium chlorochromate (PCC)

Oxidation of Alcohols contd...

Oxidation of Primary Alcohols to Carboxylic Acids

 Potassium permanganate (KMnO₄) is a typical reagent used for oxidation of a primary alcohol to a carboxylic acid. (a brown precipitate of MnO₂ indicates that oxidation has taken place)

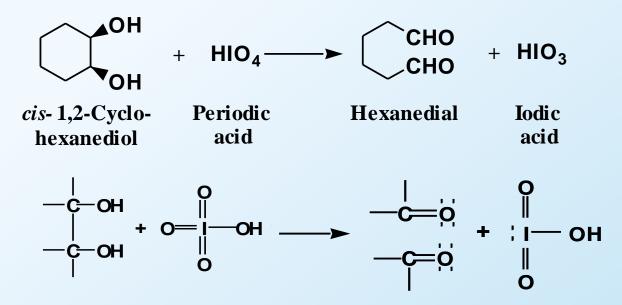

$$R - CH_{2}OH + KMnO_{4} \xrightarrow[heat]{OH^{-}} RCO_{2}^{-}K^{+} + MnO_{2}$$

$$\downarrow H_{3}O^{+}$$

$$RCO_{3}H$$

Oxidation of Secondary Alcohols to Ketones

 Oxidation of a secondary alcohol stops at the ketone (e.g. chromic acid (H₂CrO₄) and Jones reagent (CrO₃ in acetone))


Oxidation of Alcohols contd...

- 3° Alcohols Don't Oxidize
 - Cannot lose 2 H's
 - Basis for chromic acid test

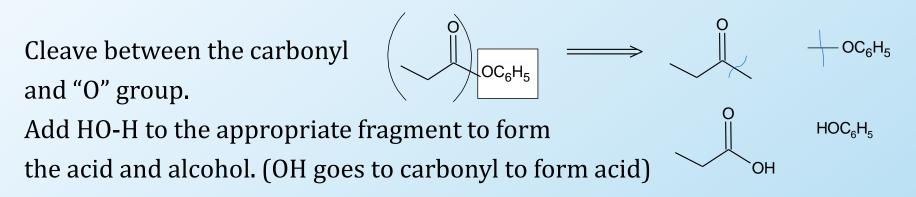
Summary of Oxidation of Alcohols						
Substrate	Product	Reagent				
1º Alcohol	Aldehyde	PCC, chromic acid				
1º Alcohol	Acid	KMnO ₄				
2º Alcohol	Ketone	PCC, chromic acid				
3º Alcohol	Don't get oxidized	NR				

Oxidation of Glycols

Glycols (vicinal alcohols) can be cleaved by periodic acid, HIO₄ to give carbonyls – aldehydes or ketones.

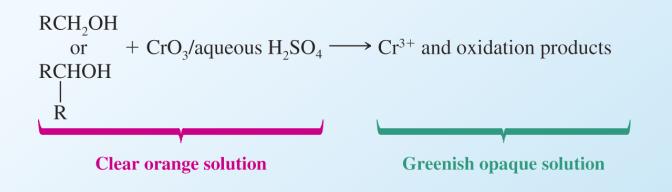
Other Oxidizing Agents and Biological Oxidation

- Other Oxidizing Agents
 - Collins reagent: Cr₂O₃ in pyridine
 - Jones reagent: chromic acid in acetone
 - KMnO₄ (strong oxidizer)
 - Nitric acid (strong oxidizer)
 - CuO, 300°C (industrial dehydrogenation)
- Biological Oxidation
 - Catalyzed by ADH, alcohol dehydrogenase.
 - Oxidizing agent is NAD+, nicotinamide adenine dinucleotide.
 - Ethanol oxidizes to acetaldehyde, then acetic acid, a normal metabolite.
 - Methanol oxidizes to formaldehyde, then formic acid, more toxic than methanol.
 - Ethylene glycol oxidizes to oxalic acid, toxic.
 - Treatment for poisoning is excess ethanol.


Esterification

Alcohol	+	Carboxylic Acid -	──→ Carboxylic Ester	+ Water
base		acid	salt	water

- Acid is needed to catalyze the reaction.
- The reaction is similar to acid base reaction.


 $CH_3OH + CH_3COOH \xrightarrow{H^+} CH_3COOCH_3 + H_2O$

For example: what alcohol and acid is required to make CH₃CH₂COOC₆H₅?

Alcohol Analysis

- A Chemical Test for Primary and Secondary Alcohols
 - Chromium oxide in acid has a clear orange color which changes to greenish opaque if an oxidizable alcohol is present

Key Concepts

- Dehydration of alcohols (Zaitsev's product and rearrangement)
- Synthesis of alkyl halides from alcohols (stereochemistry)
- Mesylates and tosylates (stereochemistry)
- Oxidation of alcohols
- Esterification
- Analysis of alcohols