Carboxylic Acid Synthesis and Reactions

Dr. Sapna Gupta

Synthesis of Carboxylic Acids

1) By Oxidation of Alkenes and Alkynes

$$\begin{array}{c}
RCH = CHR' \xrightarrow{(1) \text{KMnO}_4, \text{OH}^-} RCO_2H + R'CO_2H \\
& \text{heat} \\
(2) H_3O^+
\end{array}$$

$$RCH = CHR' \xrightarrow{(1) O_3} RCO_2H + R'CO_2H$$

2) By Oxidation of Aldehydes and Primary Alcohols

$$R - CHO \xrightarrow{(1) \text{Ag}_2\text{O or Ag}(\text{NH}_3)_2^+\text{OH}^-} RCO_2H$$

$$RCH_2OH \xrightarrow{(1) \text{KMnO}_4, \text{OH}^-} RCO_2H$$

$$(2) \text{H}_3O^+$$

$$(2) \text{H}_3O^+$$

$$R$$
—CHO or RCH_2OH $\xrightarrow{H_2CrO_4}$ RCO_2H

3) By Oxidation of Alkylbenzenes

$$CH_3 \xrightarrow{(1) \text{ KMnO}_4, \text{ OH}^-} CO_2H$$

$$(2) H_3O^+$$

Hydrolysis of Nitriles

4) By Hydrolysis of Cyanohydrins and Other Nitriles

$$\begin{array}{c}
R \\
C = O + HCN \Longleftrightarrow R \\
R'
\end{array}$$

$$\begin{array}{c}
C \\
R'
\end{array}$$

$$\begin{array}{c}
C \\
HA \\
H_2O
\end{array}$$

$$\begin{array}{c}
C \\
R'
\end{array}$$

$$\begin{array}{c}
C \\
R'
\end{array}$$

$$\begin{array}{c} \text{HOCH}_2\text{CH}_2\text{Cl} \xrightarrow{\text{NaCN}} \text{HOCH}_2\text{CH}_2\text{CN} & \xrightarrow{(1) \text{ OH}^-, \text{H}_2\text{O}} \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

$$BrCH_{2}CH_{2}CH_{2}Br \xrightarrow{\text{NaCN}} NCCH_{2}CH_{2}CH_{2}CH \xrightarrow{\text{H}_{3}O^{+}} HO_{2}CCH_{2}CH_{2}CH_{2}CO_{2}H$$
Pentanenitrile
Glutaric acid

From Grignard Reactions

5) From Carbonation of Grignard Reagent

$$CH_{3}CH_{2}CH_{$$

Reactions of Carboxylic Acids

- Acid base reaction (see intro power point)
- Nucleophilic additions, just like all carbonyls.
- In some conditions carboxylic acids can also undergo nucleophilic substitution where OH is the leaving group.

Reactions can also occur on the alpha carbon (carbon next to carbonyl carbon)

Reactions of Carboxylic Acids

1) <u>Acid chlorides</u> are most often prepared by treating a carboxylic acid with thionyl chloride or PCl_3 or PCl_3 .

2) **Reduction**: Lithium aluminum hydride reduces a carboxyl group to a 1° alcohol. Usually done by converting acid to acyl chloride first.

O
COH
$$\frac{1. \text{ LiAlH}_4}{2. \text{ H}_2\text{O}}$$
 CH₂OH + LiOH + Al(OH)₃
4-Hydroxymethyl-cyclopentene

Reactions of Carboxylic Acids

3) **Esterification**: Esters can be prepared by treating a carboxylic acid with an alcohol in the presence of an acid catalyst, commonly H_2SO_4 or gaseous HCl. (Mechanism will be covered later.)

4) **Decarboxylation**: loss of CO_2 from a carboxyl group. Most carboxylic acids, if heated to a very high temperature, undergo thermal decarboxylation.

R-C-OH
$$\frac{\text{decarboxylation}}{\text{heat}}$$
 R-H + ∞_2

Key Concepts

- Synthesis
 - Oxidations
 - Hydrolysis of nitriles
 - Carboxylation using Grignard
- Reactions
 - Acid base reactions
 - Reductions
 - Esterification