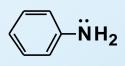
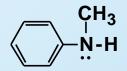
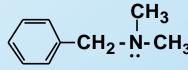
Amines Nomenclature and Properties


Dr. Sapna Gupta

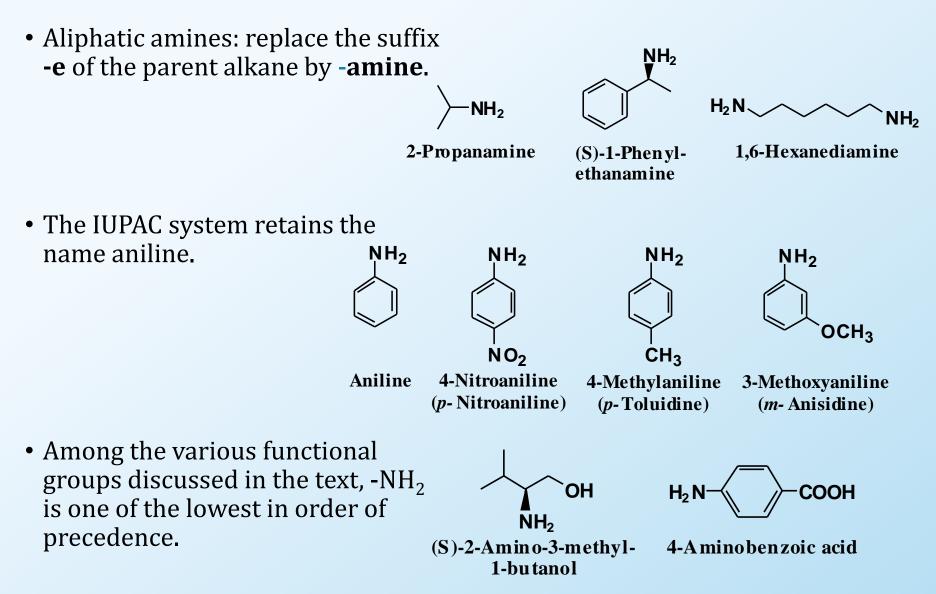
Amines


- Organic derivatives of ammonia, NH₃
- Nitrogen atom has a lone pair of electrons, making amines both basic and nucleophilic
- Amines can be classified as 1° (RNH₂), 2° (R₂NH), 3° (R_3N)

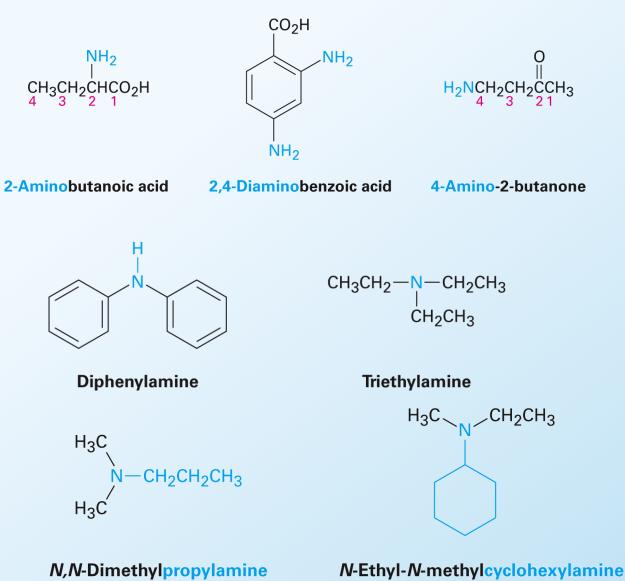
CH ₃ -NH ₂	СН ₃ - ЙН СН ₃	CH ₃ - N: CH ₃	
Methylamine	Dimethylamine	Trimethylamine	
(a 1° amine)	(a 2° amine)	(a 3° amine)	


- Amines are further divided into aliphatic, aromatic, and heterocyclic amines:
 - Aliphatic amine: An amine where nitrogen is bonded only to alkyl groups.
 - Aromatic amine: An amine where nitrogen is bonded to one or more aryl groups.

Aniline (a 1° aromatic amine) (a 2° aromatic amine)

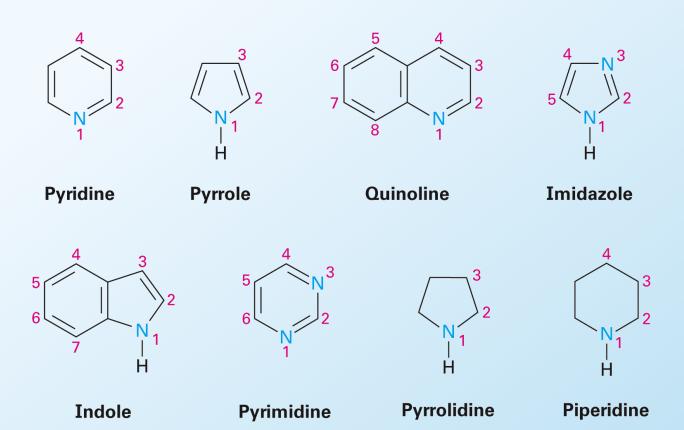


N-Methylaniline



Benzyldimethylamine (a 3° aliphatic amine)

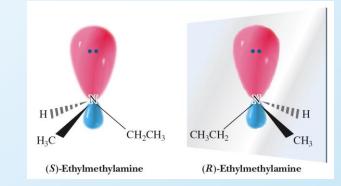
Nomenclature

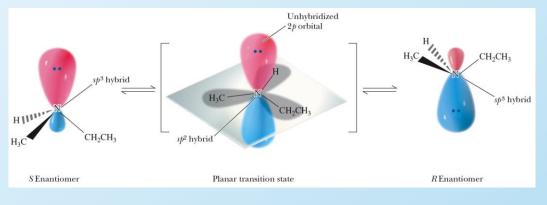

Nomenclature – contd.

Amines

Heterocyclic Amines

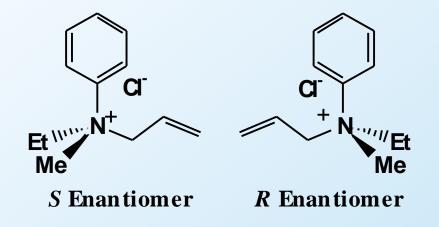
• Nitrogen is part of the ring.


Nomenclature – Quarternary Salts


• When four groups are bonded to nitrogen, the compound is named as a salt of the corresponding amine. These are also called quarternary salts.

$$\begin{array}{c} \mathsf{Cl}^{-} \\ \mathsf{Me}_{4} \mathsf{N}^{+} \mathsf{Cl}^{-} \\ \mathsf{Tetramethy} \\ \text{ammonium} \\ \text{chloride} \end{array} \begin{array}{c} \mathsf{Cl}^{-} \\ \mathsf{NCH}_{2}(\mathsf{CH}_{2})_{1\,2}\mathsf{CH}_{3} \\ \mathsf{Tetradecylpyridinium chloride} \\ (\mathsf{Cetylpyridinium chloride}) \\ (\mathsf{Cetylpyridinium chloride}) \\ \mathsf{NCH}_{2}(\mathsf{CH}_{2})_{1\,2}\mathsf{CH}_{3} \\ \mathsf{Ph}-\mathsf{CH}_{2}^{+}\mathsf{NMe}_{3} \mathsf{OH}^{-} \\ \mathsf{Benzyltrimethyl-ammonium} \\ \mathsf{ammonium} \\ \mathsf{hydroxide} \end{array}$$

Chirality of Amines


- Consider the unshared pair of electrons on nitrogen as a fourth group, then the arrangement of groups around N is approximately tetrahedral.
- An amine with three different groups bonded to N is chiral and exists as a pair of enantiomers and, in principle, can be resolved.
- In practice, however, they cannot be resolved because they undergo pyramidal inversion, which converts one enantiomer to the other.

Chirality of Amines

• The pyramidal inversion is not possible in quarternary amines and the salts can be resolved.

Basicity of Amines

(a Lewis base)

- The lone pair of electrons on nitrogen makes amines basic and nucleophilic
- They react with acids to form acid-base salts

$$\begin{array}{c} & & & \\ & & &$$

- Amines are stronger bases than alcohols, ethers, or water
- Most simple alkylammonium ions have pKa's of 10 to 11
- In gas phase, the basicity of amines is 1>2>3

 $(CH_3)_3N > (CH_3)_2NH > CH_3NH_2 > NH_3$

• In aqueous phase the basicity of amines is 2>1>3. This is because H of N is stabilized by hydrogen bonding.

 $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$

Basicity – pKa of Aliphatic Amines

Amine	S tructure	pK _a	pK _b
Ammonia	NH ₃	9.26	4.74
Primary Amines	-		
methylamine	$CH_3 NH_2$	10.64	3.36
ethylamine	$CH_3 CH_2 NH_2$	10.81	3.19
cyclohexylamine		10.66	3.34
Secondary Amines			
dimethylamine	$(CH_3)_2 NH$	10.73	3.27
diethylamine	$(CH_3 CH_2)_2 NH$	10.98	3.02
Tertiary Amines			
trimethylamine	$(CH_3)_3N$	9.81	4.19
triethylamine	$(CH_3 CH_2)_3 N$	10.75	3.25

Basicity of Arylamines

• Aromatic amines are weaker than aliphatic amines.

$$\bigvee$$
 -NH₂ + H₂O - NH₃ + OH $pK_a = 10.66$

Cyclohexylamine

Cyclohexylammonium hydroxide

$$\bigvee$$
 -NH₂ + H₂O \swarrow -NH₃⁺ OH⁻ pK_a = 4.63

Aniline

Anilinium hydroxide

The N lone-pair electrons in arylamines are delocalized by interaction with the aromatic ring pi electron system and are less able to accept H⁺ than are alkylamines
:NH2
<li

- Electron-donating substituents (such as –CH₃, –NH₂, –OCH₃) increase the basicity of the corresponding arylamine
- Electron-withdrawing substituents (such as -Cl, -NO₂, -CN) decrease arylamine basicity

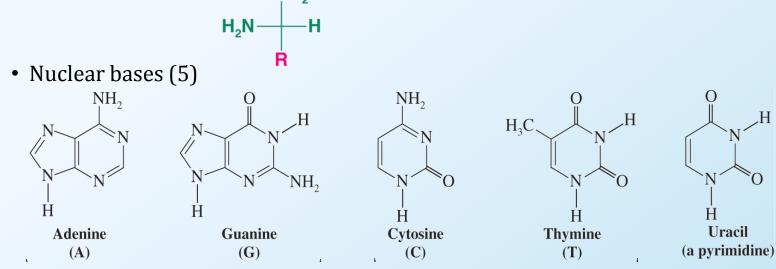
Basicity – pKa of Aromatic Amines

Amine	Structure	pK _a of Conjugate A cid
Aromatic Amines		
Aniline		4.63
4-Methylaniline		IH ₂ 5.08
4-Chloroaniline		2 4.15
4-Nitroaniline		IH ₂ 1.0
Heterocyclic Aromatic Ami	ines	
Pyridine	N	5.25
Imidazole	N N	6.95
	H	

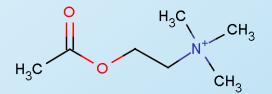
Physical Properties of Amines

• Boiling point: relatively high due to hydrogen bonding. 1°>2°>3° due to decreasing hydrogen bonding.

	$CH_3 CH_3$	$CH_3 NH_2$	CH_3OH
MW (g/mol)	30.1	31.1	32.0
bp (°C)	-88.6	-6.3	65.0

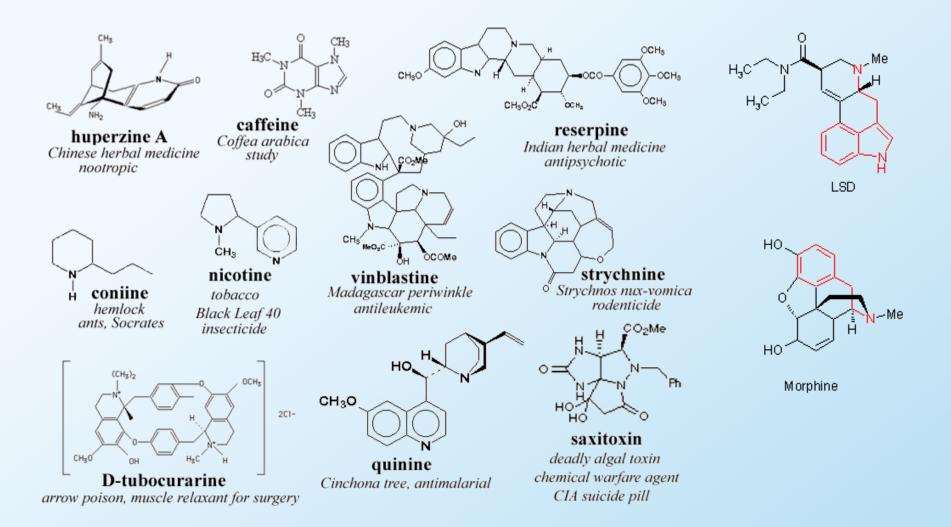

- Solubility in water: as above
- Odor: foul smelling compounds
 - Fish smell: trimethyl and dimethyl amine
 - Cadaverine: 1,5-hexanediamine
 - Putrascene: 1,4-butanediamine

Physical Properties

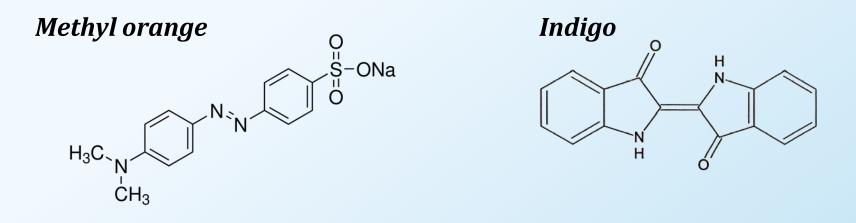

Name	Structure	mp (°C)	bp (°C)	Water Solubility (25°C) (g 100 mL ^{−1})	рК _а (aminium ion)
Primary Amines					
Methylamine	CH ₃ NH ₂	-94	-6	Very soluble	10.64
Ethylamine	CH ₃ CH ₂ NH ₂	-81	17	Very soluble	10.75
Propylamine	CH ₃ CH ₂ CH ₂ NH ₂	-83	49	Very soluble	10.67
Isopropylamine	(CH ₃) ₂ CHNH ₂	-101	33	Very soluble	10.73
Butylamine	CH ₃ (CH ₂) ₂ CH ₂ NH ₂	-51	78	Very soluble	10.61
Isobutylamine	(CH ₃) ₂ CHCH ₂ NH ₂	-86	68	Very soluble	10.49
sec-Butylamine	CH ₃ CH ₂ CH(CH ₃)NH ₂	-104	63	Very soluble	10.56
tert-Butylamine	(CH ₃) ₃ CNH ₂	-68	45	Very soluble	10.45
Cyclohexylamine	Cyclo-C ₆ H ₁₁ NH ₂	-18	134	Slightly soluble	10.64
Benzylamine	C ₆ H ₅ CH ₂ NH ₂	10	185	Slightly soluble	9.30
Aniline	C ₆ H ₅ NH ₂	-6	184	3.7	4.58
<i>p</i> -Toluidine	p-CH ₃ C ₆ H ₄ NH ₂	44	200	Slightly soluble	5.08
p-Anisidine	p-CH ₃ OC ₆ H ₄ NH ₂	57	244	Very slightly soluble	5.30
p-Chloroaniline	p-CIC ₆ H ₄ NH ₂	73	232	Insoluble	4.00
p-Nitroaniline	p-NO ₂ C ₆ H ₄ NH ₂	148	332	Insoluble	1.00
Secondary Amines					
Dimethylamine	(CH ₃) ₂ NH	-92	7	Very soluble	10.72
Diethylamine	(CH ₃ CH ₂) ₂ NH	-48	56	Very soluble	10.98
Dipropylamine	(CH ₃ CH ₂ CH ₂) ₂ NH	-40	110	Very soluble	10.98
N-Methylaniline	C ₆ H ₅ NHCH ₃	-57	196	Slightly soluble	4.70
Diphenylamine	(C ₆ H ₅) ₂ NH	53	302	Insoluble	0.80
Tertiary Amines					
Trimethylamine	(CH ₃) ₃ N	-117	2.9	Very soluble	9.70
Triethylamine	(CH ₃ CH ₂) ₃ N	-115	90	14	10.76
Tripropylamine	(CH ₃ CH ₂ CH ₂) ₃ N	-93	156	Slightly soluble	10.64
N,N-Dimethylaniline	$C_6H_5N(CH_3)_2$	3	194	Slightly soluble	5.06

Amines in Nature

- Nitrogen containing natural products:
 - Amino Acids (20) CO₂H


- Neurotransmitters (next slide)
- Are usually addictive and in some cases toxic.
- Body's common transmitter is acetylcholine.

.H


 \cap

Alkaloids - examples

Amines - Dyes

Amines are important functional group in synthesis of dyes.

Key Words/Concepts

- Nomenclature
- Physical properties
- Basicity of amines