Alkanes, Alkenes, Alkynes Cycloalkanes, Bicyclics, Alkyl Halides, Alcohols Nomenclature and Constitutional Isomers

Dr. Sapna Gupta

Structure

- Hydrocarbon: A compound composed only of carbon and hydrogen.
- Saturated hydrocarbon: A hydrocarbon containing only single bonds.
- Alkane: A saturated hydrocarbon whose carbons are arranged in an open chain.
- Alkanes are also called "Aliphatic" hydrocarbons.
- Organic Structures review
 - Molecular formula C₄H₁₀
 - Condensed structure CH₃CH₂CH₂CH₃
 - Structural formula
 - Expanded structure

• Line structure

Naming Straight Chain Alkanes

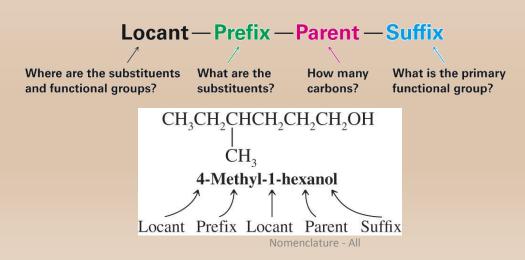

# of C	prefix		
1	Meth		
2	Eth		
3	Prop		
4	But		
5	Pent		
6	Hex		
7	Hept		
8	Oct		
9	Non		
10	Deca		

Table 3.3 Names of Straight-Chain Alkanes

Number of carbons (n)	Name	Formula (C _n H _{2n+2})	Number of carbons (n)	Name	Formula (C _n H _{2n+2})
1	Methane	CH ₄	9	Nonane	C ₉ H ₂₀
2	Ethane	C_2H_6	10	Decane	$C_{10}H_{22}$
3	Propane	C_3H_8	11	Undecane	C ₁₁ H ₂₄
4	Butane	C ₄ H ₁₀	12	Dodecane	$C_{12}H_{26}$
5	Pentane	C ₅ H ₁₂	13	Tridecane	C ₁₃ H ₂₈
6	Hexane	C ₆ H ₁₄	20	Icosane	C ₂₀ H ₄₂
7	Heptane	C ₇ H ₁₆	30	Triacontane	C ₃₀ H ₆₂
8	Octane	C ₈ H ₁₈			

- Find the longest continuous carbon chain.
- 2. Number the carbons, starting closest to the first branch.
- 3. Numbering generally starts from the end of the chain which is closest to the group named in the suffix
- 4. Name the groups attached to the chain, using the carbon number as the locator.
- 5. Alphabetize substituents.
- 6. Use di-, tri-, etc., for multiples of same substituent. (don't use these during alphabetizing substituents)
- 7. An IUPAC name may have up to 4 features: locants, prefixes, parent compound and suffixes

Alkyl Groups (substituents)

Alkyl groups are [alkane-1H]. The –yl ending on any group indicates that it is connected to a larger compound. Common substituents are up to 4C except for phenyl.

- CH₃-, methyl (Me)
- CH_3CH_2 -, ethyl (Et)
- CH₃CH₂CH₂-, *n*-propyl (nPr)

$$\sim$$
 or \sim or \sim

or ϕ — or Ar— (if ring substituents are present)

Phenyl group (Benzene connected on one carbon)

CH₃CH₂CH₂CH₂-, *n*-butyl, (nBu)

(secBu)

One More Thing on Alkyl Groups

(tBu)

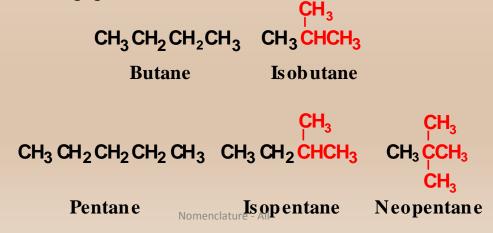
No other name as there is no branching

- The name of a saturated hydrocarbon with an unbranched chain consists of a prefix and suffix.
- The parent chain is the longest chain of carbon atoms.
- Each substituent is given a name and a number. Use a hyphen to connect the number to the name.

• If there is one substituent, number the chain from the end that gives it the lower number.

- If there are two or more identical substituents, number the chain from the end that gives the lower number to the substituent encountered first.
 - Indicate the number of times the substituent appears by a prefix di-, tri-, tetra-, etc.
 - Use commas to separate position numbers

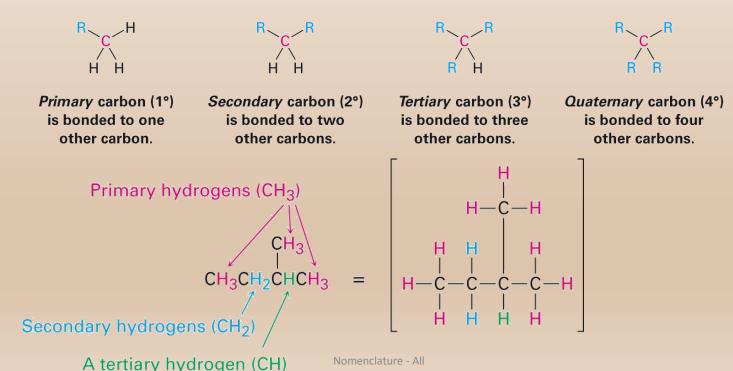
- If there are two or more different substituents,
 - list them in alphabetical order.
 - number from the end of the chain that gives the substituent encountered first the lower number



- The prefixes di-, tri-, tetra-, etc. are not included in alphabetization
 - Alphabetize the names of substituents first and then insert these prefixes.

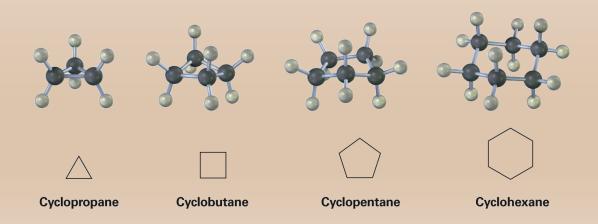
4-Ethyl-2,2-dimethylhexane (not 2,2-dimethyl-4-ethylhexane)

- Some common names of alkanes with four carbons are butanes, those with five carbons are pentanes, etc.
- iso- indicates the chain terminates in -CH(CH₃)₂; neo- that it terminates in -C(CH₃)₃.

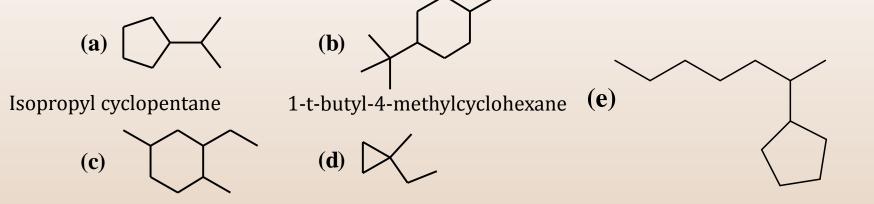


Carbons in that main chain are numbered in sequence

Substituents are identified and numbered


Classification of Carbons and Hydrogens

- Primary (1°) C: A carbon bonded to one other carbon.
 - 1° H: a hydrogen bonded to a 1° carbon
- Secondary (2°) C: A carbon bonded to two other carbons.
 - 2° H: a hydrogen bonded to a 2° carbon
- Tertiary (3°) C: A carbon bonded to three other carbons.
 - 3° H: a hydrogen bonded to a 3° carbon
- Quaternary (4°) C: A carbon bonded to four other carbons.



Cycloalkanes - Nomenclature

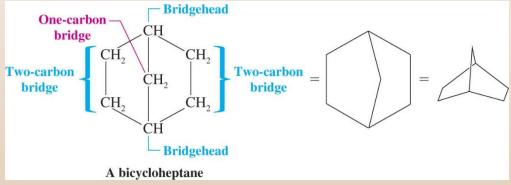
- Rings of carbon atoms (-CH₂- groups)
- Formula: C_nH_{2n}
- Cycloalkane name will usually be the base compound
- Number carbons in ring if >1 substituent
- First in alphabet gets lowest number if more than one substituent
- In case where a long chain is attached to cycloalkane then give the name of the chain with cyclic alkane as cycloalkyl group.

Naming Cycloalkanes

1-ethyl-2,5-dimethylcyclohexane

1-ethyl-1-methylcyclopropane

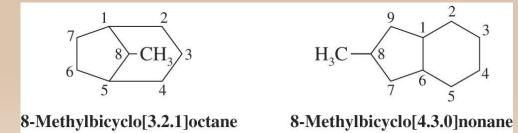
2-cyclopentylheptane


Cis-Trans Isomerism

- Cis: like groups on same side of ring
- Trans: like groups on opposite sides of ring

Bicyclic Compounds

- Bicyloalkanes contain 2 rings fused together (not connected by a bond)
- The alkane with the same number of total carbons is used as the parent and the prefix bicyclo- is used


Bicyclo [2.2.1] heptane

Nomenclature - All

• The number of carbons in each bridge is included in the middle of the name in square brackets

• For substituents: number the largest ring; the substituent can get a

large number.

Alkyl Halides

- Name as haloalkane.
- Choose the longest carbon chain, even if the halogen is not bonded to any of those C's.
- Use lowest possible numbers for position.

Classes of Halides

- Alkyl: Halogen, X, is directly bonded to sp^3 carbon.
- Vinyl: X is bonded to sp^2 carbon of alkene.
- Aryl: X is bonded to sp^2 carbon on benzene ring. Examples:

"Trivial" Names

- CH₂X₂ called methylene halide (e.g. CH₂Cl₂ is methylene chloride)
- CHX₃ is a haloform(e.g. CHCl₃ is chloroform)
- CX₄ is carbon tetrahalide. (e.g. CCl₄ is carbon tet)

More Classification of Alkyl Halides

- Methyl halides: only one C, CH₃X
- Primary, Secondary and Tertiary
- Geminal and vicinal

Alkenes

- Parent is longest chain containing the double bond.
- -ane changes to -ene. (or -diene, -triene)
- Number the chain so that the double bond has the lowest possible number.
- In a ring, the double bond is assumed to be between carbon 1 and carbon 2.

Examples

Note: Red names are new IUPAC

2-methyl-2-butene 2-methylbut-2-ene

3-methylcyclopentene

2-*sec*-butyl-1,3-cyclohexadiene 2-*sec*-butylcyclohexa-1,3-diene

3-*n*-propyl-1-heptene 3-*n*-propylhept-1-ene

Alkene Substituents

Common names for small molecules

$$CH_2 = CH_2$$
 $CH_2 = CH - CH_3$ $CH_2 = C - CH_3$ ethylene propylene isobutylene

Cis-trans Isomerism

- Hydrogens on same side of double bond, alkene is cis.
- Hydrogens on opposite sides of double bond, alkene is trans.
- Cycloalkenes are assumed to be cis.
- Trans cycloalkenes are not stable unless the ring has at least 8 carbons.

$$CH_3 CH_2 CH_3$$

$$CH_3 CH_2 H$$

trans-2-pentene *trans*-pent-2-ene

$$Br C = C H$$

cis-1,2-dibromoethene

Alkynes

- •Find the longest chain containing the triple bond.
- •Change -ane ending to -yne.
- •Number the chain, starting at the end closest to the triple bond.
- •Give branches or other substituents a number to locate their position.

Examples

IUPAC Names

$$CH_3-C\equiv CH$$

propyne

$$CH_3-C\equiv C-CH_2-CH_2-Br$$

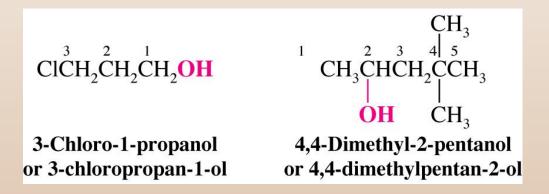
5-bromo-2-pentyne 5-bromopent-2-yne

$$CH_3 CH_3 CH_3 CH_3 CH_3 - CH - CH_2 - C \equiv C - CH - CH_3$$

2,6-dimethyl-3-heptyne 2,6-dimethylpept-3-yne

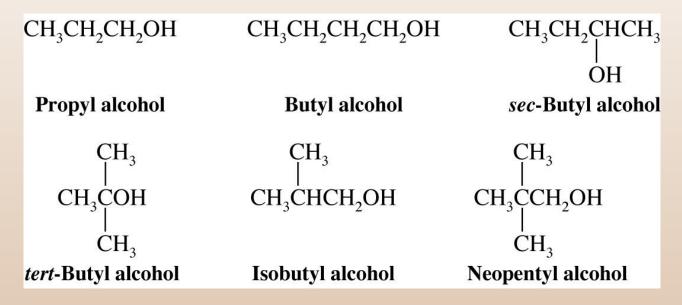
Common Names

$$CH_3 - C \equiv CH$$


Methylacetylene (terminal alkyne)

$$\begin{array}{cccc} CH_3 & CH_3 \\ CH_3-CH-CH_2-C\equiv C-CH-CH_3 \end{array}$$

isobutylisopropylacetylene (internal alkyne)


Alcohols

- Select the longest chain containing the hydroxyl and change the suffix name of the corresponding parent alkane from -ane to -ol
- Number the parent to give the hydroxyl the lowest possible number
- The other substituents take their locations accordingly

Alcohols and Halides - Common Names

Common names of simple alcohols and halides still used and approved by IUPAC

Additional Functional Groups

- All other functional groups, except ethers and halides have a higher priority than alkynes.
- For a complete list of naming priorities, look inside the back cover of your text.

$$CH_3$$

$$CH_2 = CH - CH_2 - CH - C \equiv CH$$

$$CH_3-C\equiv C-CH_2-CH-CH_3$$

4-methyl-1-hexen-5-yne 4-methylhex-1-en-5-yne

Solved Examples

$$\begin{array}{c} \text{Cl} & \text{OH} \\ & \downarrow \text{CH}_3 \\ \\ \text{Chlorocyclopentane} & \textbf{2-Methylcyclohexanol} \\ \end{array}$$

Tips and Tricks for Writing Structural Isomers

- The following functional groups can have the same molecular formula.
 - Alkenes and Cycloalkanes
 - Alcohols and Ethers
 - Aldehydes and Ketones
 - Carboxylic acids and Esters
- It is very likely that you may have to draw more than one type of functional group for a given molecular formula in the different isomers.
- It is also likely that you may have more than one functional group in one compound!

Key Words/Concepts

- Naming alkanes, cycloalkanes and bicycloalkanes
- Constitutional isomers
- Cis and trans isomers in cycloalkanes
- Be able to write all types of representations (line structure, condensed structure and expanded structure)
- Know all the alkyl groups and the phenyl group