Write constitutional isomers as instructed in the following questions.

1) Circle the isomers in the following:

\[\text{CH}_3\text{CH}=\text{CH}_2 \quad \text{OH} \quad \text{O} \quad \text{CH} \quad \text{II} \quad \text{III} \quad \text{IV} \]

2) Circle the two compounds that are the same?

- \(\text{CH}_3\text{CH}_2\text{CH}=\text{CHCH}_2\text{CH}_3 \)
- \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}=\text{CH}_2 \)
- \(\text{CH}_3\text{CH}=\text{CHCH}_2\text{CH}_3 \)
- \(\text{CH}_2=\text{CHCH}_2\text{CH}_2\text{CH}_3 \)

3) Write all the constitutional isomers possible for \(\text{C}_6\text{H}_{12} \) as follows.

<table>
<thead>
<tr>
<th>Alkenes</th>
<th>Cycloalkanes</th>
</tr>
</thead>
</table>

4) All aldehydes and ketones possible for \(\text{C}_5\text{H}_{10}\text{O} \)
5) All the constitutional isomers of $\text{C}_6\text{H}_{14}\text{O}$ as indicated below.

<table>
<thead>
<tr>
<th>Alcohols (Label alcohols as primary, secondary or tertiary.)</th>
<th>Ethers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6) All amines of $\text{C}_4\text{H}_{11}\text{N}$. (Label the N as primary, secondary or tertiary.)

7) Draw an alkane of six carbons that has only secondary carbons.