Alkynes/Nomenclature, Synthesis and Reactions Name:			
1.	Write the structures for the follo 2-octyne	wing compounds. Ethylpropylacetylene	Phenylethyne
	Cyclohexylacetylene	5-methyl-3-octyne	1,4-heptadiyne
	Trans-3,5-dibromocyclodecyne	5,5-dibromo-4-phyenylcyclooct-1-yne	
	(E)-6-ethyloct-4-yne-2-ene	(S)-3-methylpent-4-	yne-1-ene

2. Give the IUPAC names of the following compounds.

 $CH_3-C \equiv CCH_2CH_3 \qquad Ph-C \equiv C-H \qquad CH_3CBr_2C \equiv C-CH_3$

 $(CH_3)_3C\text{-}C \equiv C\text{-}C(CH_3)CH_2CH_3$

ĊC= CH₂CH₃

CH₃-C≡C-CHPhCH₃

—СН₃ CH₂

<u>Alkynes - Synthesis</u>

- 3. Show how you would carry out the following transformations.
 - a) 2,2-dibromobutane _____ but-1-yne
 - b) 2,2-dibromobutane but-2-yne
 - c) But-1-yne _____ oct-3-yne
 - d) (Trans)-hex-2-ene → hex-2-yne
- 4. Predict the products formed when $CH_3CH_2C\equiv C^-Na^+$ reacts with the following compounds:
 - a) Ethyl bromide
 - b) t-butylbromide
 - c) Cyclohexanol

Alkynes - Reactions

- 5. Predict the products of the reaction of pent-1-yne with the following reagents.
 - a) 1 mol of HCl
 - b) 2 mols of HCl
 - c) Excess H₂, Ni
 - d) H₂, Pd/BaSO₄
 - e) 1 mol of Br_2
 - f) 2 mols of Br₂
 - g) Warm, concentrated KMnO₄
 - h) Na, NH₃
 - i) NaNH₂
 - j) H₂SO₄/HgSO₄, H₂O
 - k) Sia₂BH, then H_2O_2 , OH⁻

- 6. Using cyclooctyne as your starting material, show how you would synthesize the following compounds. Once you have shown how to synthesize one compound, you can use it as a starting material for any later problem.
 - a) (Cis)-cyclooctene
 - b) Cyclooctane
 - c) (Trans)-1,2-dibromocyclooctane
 - d) Cyclooctanone
 - e) 1,1-dibromocyclooctane
 - f) CHO(CH₂)₆CHO
 - g) COOH(CH₂)₆COOH

- 7. Show how you would carry out the following transformations.
 - a) Hex-1-yne → hexan-2-one (CH₃COCH₂CH₂CH₂CH₂CH₃)
 b) Hex-1-yne → hexanal (CH₃CH₂CH₂CH₂CH₂CH₂CHO)
 c) (Trans)-hex-2-ene → (cis)-hex-2-ene

8. Show how you would make the following compounds acetylene and any other reagents.a) 6-phenylhex-1-en-4-yne

b) (Cis)-1-phenylpent-2-ene

c) (Trans)-1-phenylpent-2-ene

- 9. Using **hex-1-ene** as your starting material, show how you would synthesize the following compounds. Once you have shown how to synthesize one compound, you can use it as a starting material for any later problem.
 - a) 1,2-bromohexane
 - b) Hex-1-yne
 - c) 2,2-dibromohexane
 - d) Hex-2-yne
 - e) Hexan-2-one (CH₃CH₂CH₂CH₂COCH₃)
 - f) Hexanal (CH₃CH₂CH₂CH₂CH₂CHO)
 - g) Pentanal (CH₃CH₂CH₂CH₂CHO)

- 10. Show how you would make the following compounds acetylene and any other compounds containing no more than four carbon atoms.
 - a) Hex-1-yne
 - b) Hex-2-yne
 - c) (Cis)-hex-2-ene
 - d) (Trans)-hex-2-ene
 - e) 1,1-dibromohexane
 - f) 2,2-dibromohexane
 - g) Pentanal (CH₃CH₂CH₂CH₂CHO)
 - h) Pentan-2-one (CH₃COCH₂CH₂CH₃)
 - i) 3,4-dibromohexane
 - j) 2-methylhex-3-yn-2-ol

11. Musculure, the sex attractant of the common housefly, is cis-tircos-9-ene. Most synthesis give the trans as the major product. Devise a synthesis for the cis isomer of musculure from acetylene and any other compound of your choice.

12. When treated with catalytic hydrogen an unknown compound X absorbs 5 mols of hydrogen to give n-butylcyclohexane. Treatment of X with an excess of ozone, followed by dimethylsulfide and water, gives the following compounds. Propose a structure for X.

