ACIDS AND BASES – 2 IONIZATION OF WATER, PH

Dr. Sapna Gupta

IONIZATION OF WATER

Self-Ionization of Water

 $H_2O(l) + H_2O(l) \longrightarrow H_3O^+(aq) + OH^-(aq)$ Base Acid Conj. Acid Conj. base

We call the equilibrium constant the ion-product constant, K_{w} .

 $K_{\rm w} = [{\rm H}_3{\rm O}^+][{\rm O}{\rm H}^-]$ At 25°C, $K_{\rm w} = 1.0 \times 10^{-14}$

As temperature increases, the value of K_w increases.

Solutions can be characterized as

Acidic: $[H_3O^+] > 1.0 \times 10^{-7} M$ Neutral: $[H_3O^+] = 1.0 \times 10^{-7} M$ Basic: $[H_3O^+] < 1.0 \times 10^{-7} M$

EXAMPLE: CALCULATION OF CONCENTRATIONS

Calculate the hydronium and hydroxide ion concentration at 25°C in

- a. 0.10 *M* HCl
- b. $1.4 \times 10^{-4} M Mg(OH)_2$

Solution:

- a. When HCl ionizes, it gives H⁺ and Cl⁻. So $[H^+] = [Cl^-] = [HCl] = 0.10$ M.
- b. When Mg(OH)₂ ionizes, it gives Mg²⁺ and 2 OH⁻. So 2[OH⁻] = 2($1.4 \times 10^{-4} M$) = $2.8 \times 10^{-4} M$.

CALCULATING pH

 $pH = -log[H_3O^+]$

And inverse: $[H_3O^+] = 10^{-pH}$

- When pH = 7, the solution is neutral ([H₃O⁺] = $1.0 \times 10^{-7} M$).
- When pH < 7.00, the solution is acidic ([H₃O⁺] > $1.0 \times 10^{-7} M$).
- When pH > 7.00, the solution is basic ([H₃O⁺] < $1.0 \times 10^{-7} M$).

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display.				
TABLE 16.3	Benchmark pH Values for a Ran Concentrations at 25°C	ge of Hydronium Ion		
[H ₃ O ⁺](<i>M</i>)	–log [H₃O ⁺]	рН	+	
0.10	$-\log(1.0 \times 10^{-1})$	1.00		
0.010	$-\log(1.0 \times 10^{-2})$	2.00		
1.0×10^{-3}	$-\log(1.0 \times 10^{-3})$	3.00		
1.0×10^{-4}	$-\log(1.0 \times 10^{-4})$	4.00		
1.0×10^{-5}	$-\log(1.0 \times 10^{-5})$	5.00		
1.0×10^{-6}	$-\log(1.0 \times 10^{-6})$	6.00	Acidic	
1.0×10^{-7}	$-\log(1.0 \times 10^{-7})$	7.00	Neutral	
1.0×10^{-8}	$-\log(1.0 \times 10^{-8})$	8.00	Basic	
1.0×10^{-9}	$-\log(1.0 \times 10^{-9})$	9.00		
$1.0 imes 10^{-10}$	$-\log(1.0 \times 10^{-10})$	10.00		
1.0×10^{-11}	$-\log(1.0 \times 10^{-11})$	11.00		
1.0×10^{-12}	$-\log(1.0 \times 10^{-12})$	12.00		
1.0×10^{-13}	$-\log(1.0 \times 10^{-13})$	13.00		
$1.0 imes 10^{-14}$	$-\log(1.0 \times 10^{-14})$	14.00	+	

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 16.4	pH Values of Some Con	nmon Fluids	
Fluid	рН	Fluid	рН
Stomach acid	1.0	Saliva	6.4-6.9
Lemon juice	2.0	Milk	6.5
Vinegar	3.0	Pure water	7.0
Grapefruit juice	3.2	Blood	7.35-7.45
Orange juice	3.5	Tears	7.4
Urine	4.8-7.5	Milk of magnesia	10.6
Rainwater (in cle	ean air) 5.5	Household ammonia	11.5

EXAMPLE: CALCULATING pH

1) What is the pH of a solution that has a hydronium ion concentration of $6.5 \times 10^{-5} M$?

$$pH = -log[H_3O^+]$$

 $pH = -log[6.54 \times 10^{-5}]$
 $pH = 4.19$

2) What is the hydronium ion concentration of a solution with pH 3.65?

$$[H_3O^+] = 10^{-pH}$$

 $[H_3O^+] = 10^{-3.65}$
 $[H_3O^+] = 2.2 \times 10^{-4}$

рН, рОН AND K_W

• pOH can be calculated just like pH.

 $pOH = -log[OH^{-}]$ $[OH^{-}] = 10^{-pOH}$

- $K_{\rm W}$ is the hydronium ion and hydroxide ion concentrations; so $pK_{\rm W}$ is the addition of pH and pOH.

 $K_{\rm w} = [H_3 O^+][OH^-]$

 $pK_{w} = pH + pOH = 14.00$

• Next slide has all relationships...

EXAMPLE - pOH

1) What is the pOH of a solution that has a hydroxide ion concentration of $4.3 \times 10^{-2} M$?

$$pOH = -log[OH^{-}]$$

 $pOH = -log[4.3 \times 10^{-2}]$
 $pOH = 1.37$

2) What is the hydroxide ion concentration of a solution with pOH 8.35?

 $[OH^{-}] = 10^{-pOH}$ $[OH^{-}] = 10^{-8.35}$ $[OH^{-}] = 4.5 \times 10^{-9}$

STRONG ACIDS AND BASES

Dr. Sa

- All strong acids and bases ionize completely; so their concentrations can be used to calculate the pH and pOH.
- For diprotic acids, e.g. sulfuric acid only the first ionization reactions is measured; on the contrary dihydroxide bases will ionize to give two hydroxides in solution.

Strong Acid	Ionization Reaction
Hydrochloric acid	$HCl(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + Cl^-(aq)$
Hydrobromic acid	$HBr(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + Br^-(aq)$
Hydroiodic acid	$HI(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + I^-(aq)$
Nitric acid	$HNO_3(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + NO_3^-(aq)$
Chloric acid	$HClO_3(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + ClO_3^-(aq)$
Perchloric acid	$HClO_4(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + ClO_4^-(aq)$
Sulfuric acid	$H_2SO_4(aq) + H_2O(l) \longrightarrow H_3O^+(aq) + HSO_4^-(aq)$
	Group 1A hydroxides
	$\text{LiOH}(aq) \longrightarrow \text{Li}^+(aq) + \text{OH}^-(aq)$
	$NaOH(aq) \longrightarrow Na^+(aq) + OH^-(aq)$
	$\operatorname{KOH}(aq) \longrightarrow \operatorname{K}^+(aq) + \operatorname{OH}^-(aq)$
	$RbOH(aq) \longrightarrow Rb^+(aq) + OH^-(aq)$
	$CsOH(aq) \longrightarrow Cs^+(aq) + OH^-(aq)$
	Group 2A hydroxides
	$Ca(OH)_2(aq) \longrightarrow Ca^{2+}(aq) + 2OH^{-}(aq)$
apna Gupta/Acids Bases pH	$\operatorname{Sr}(\operatorname{OH})_2(aq) \longrightarrow \operatorname{Sr}^{2+}(aq) + 2\operatorname{OH}^-(aq)$
	$Ba(OH)_2(aq) \longrightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$

EXAMPLE

• What is the pH of a 0.057 M solution of HBr?

Solution: HBr ionizes completely so the conc. of the acid can be used as H_3O^+ . HBr (aq) + $H_2O(1) \longrightarrow H_3O^+(aq) + Br^-(aq)$ $pH = -log[H_3O^+]$ pH = -log[0.057]pH = 1.24 Note: very low pH - strong acid.

• What is the pOH of a solution of 0.034 *M* solution of Ca(OH)₂?

Solution: Ca(OH)₂ ionizes to give 2 mols of OH⁻, so conc. has to be doubled.

$$Ca(OH)_{2} (aq) \longrightarrow Ca^{2+} (aq) + 2OH^{-} (aq)$$

$$[OH^{-}] = 0.034 \text{ M} Ca(OH)_{2}x \frac{2 \text{ mol OH}^{-}}{1 \text{ mol Ca}(OH)_{2}}$$

$$[OH^{-}] = 0.068 \text{ M}$$

$$pOH = -log[OH^{-}]$$

$$pOH = -log[0.068]$$

$$pOH = -log[0.068]$$

KEY CONCEPTS

- Calculation of pH and pOH
- Calculation of hydronium and hydroxide ion conc.