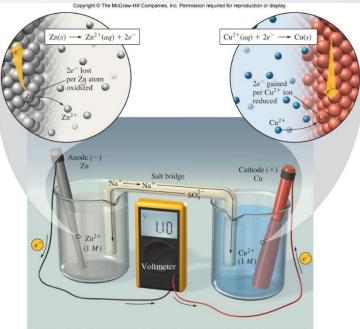
ELECTROCHEMISTRY – 3 PRACTICAL APPLICATION BATTERIES AND ELECTROLYSIS

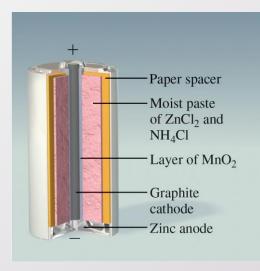

Dr. Sapna Gupta

ELECTROCHEMICAL CELLS

An **electrochemical cell** is a system consisting of electrodes that dip into an electrolyte and in which a chemical reaction either uses or generates an electric current.

A **voltaic** or **galvanic cell** is an electrochemical cell in which a spontaneous reaction generates an electric current.

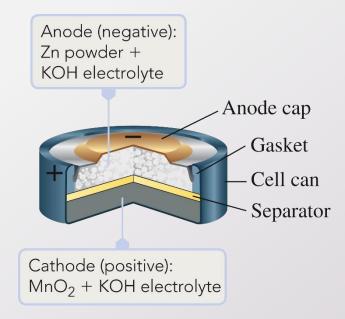
An **electrolytic cell** is an electrochemical cell in which an electric current drives an otherwise nonspontaneous reaction.


GALVANIC CELLS

- **Galvanic cell** the experimental apparatus for generating electricity through the use of a spontaneous reaction
- Electrodes
 - Anode (oxidation)
 - Cathode (reduction)
- Half-cell combination of container, electrode and solution
- **Salt bridge** conducting medium through which the cations and anions can move from one half-cell to the other.
- Ion migration
 - Cations migrate toward the cathode
 - Anions migrate toward the anode
- Cell potential (E_{cell}) difference in electrical potential between the anode and cathode
 - Concentration dependent
 - Temperature dependent
 - Determined by nature of reactants

BATTERIES

- A battery is a **galvanic cell**, or a series of cells connected that can be used to deliver a self-contained source of direct electric current.
- Dry Cells and Alkaline Batteries
 - no fluid components
 - Zn container in contact with MnO₂ and an electrolyte


Anode:
$$\operatorname{Zn}(s) \longrightarrow \operatorname{Zn}^{2^+}(aq) + 2e^-$$

Cathode: $2\operatorname{NH}_4^+(aq) + 2\operatorname{MnO}_2(s) + 2e^- \longrightarrow \operatorname{Mn}_2\operatorname{O}_3(s) + 2\operatorname{NH}_3(aq) + \operatorname{H}_2\operatorname{O}(l)$
Overall: $\operatorname{Zn}(s) + 2\operatorname{NH}_4^+(aq) + 2\operatorname{MnO}_2(s) \longrightarrow \operatorname{Zn}^{2^+}(aq) + \operatorname{Mn}_2\operatorname{O}_3(s) + 2\operatorname{NH}_3(aq) + \operatorname{H}_2\operatorname{O}(l)$

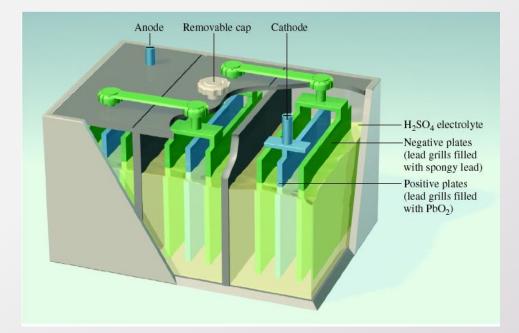
ALKALINE CELL

- Common watch batteries
- Anode: $\operatorname{Zn}(s) + 2\operatorname{OH}^{-}(aq) \rightarrow \operatorname{Zn}(\operatorname{OH})_{2}(s) + 2e^{-}$
- Cathode: $2MnO_2(s) + H_2O(l) + 2e^- \rightarrow Mn_2O_3(s) + 2OH^-(aq)$

This cell performs better under current drain and in cold weather. It isn't truly "dry" but rather uses an aqueous paste.

DRY CELLS – ZINC-CARBON

Anode: $\operatorname{Zn}(s) \to \operatorname{Zn}^{2+}(aq) + 2e^{-}$


Cathode: $2NH_4^+(aq) + 2MnO_2(s) + 2e^- \rightarrow Mn_2O_3(s) + H_2O(l) + 2NH_3(aq)$

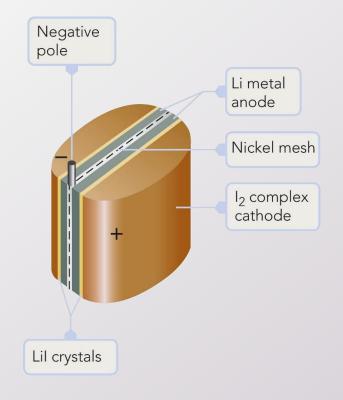
The initial voltage is about 1.5 V, but decreases and deteriorates rapidly in cold weather.

LEAD BATTERIES

- Six identical cells in series
- Lead anode and PbO₂ cathode
- Immersed in H₂SO₄
- Each cell delivers ~ 2 V
- Rechargeable

Anode:

$$Pb(s) + SO_4^{2-}(aq) \longrightarrow PbSO_4(s) + 2e^{-}$$

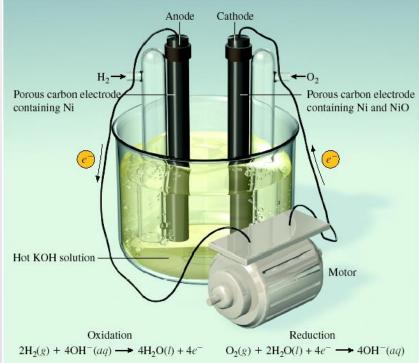

$$Cathode: PbO_2(s) + 4H^+(aq) + SO_4^{2-}(aq) + 2e^{-} \longrightarrow PbSO_4(s) + 2H_2O(l)$$

$$Overall: Pb(s) + PbO_2(s) + 4H^+(aq) + 2SO_4^{2-}(aq) \longrightarrow 2PbSO_4(s) + 2H_2O(l)$$

LITHIUM ION BATTERIES

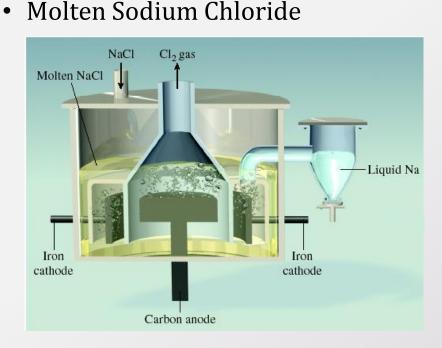
- The overall cell potential is 3.4 V, which is a relatively large potential.
- Lithium is also the lightest metal—only 6.941 g of Li (its molar mass) are needed to produce 1 mole of electrons.
- Recharged hundreds of times.

Anode:	$\text{Li}(s) \longrightarrow \text{Li}^+ + e^-$
Cathode:	$\underline{\text{Li}^{+} + \text{CoO}_{2} + e^{-} \longrightarrow \text{LiCoO}_{2}(s)}$
Overall:	$Li(s) + CoO_2 \longrightarrow LiCoO_2(s)$



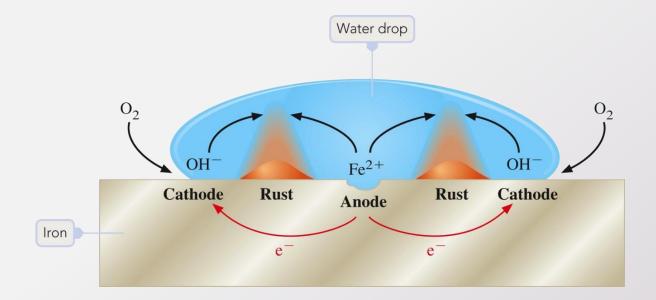
FUEL CELLS

- Direct production of electricity by electrochemical means
- Increased efficiency of power production


Anode: $2H_2(g) + 4OH^-(aq) \longrightarrow 4H_2O(l) + 4e^-$ Cathode: $O_2(g) + 2H_2O(l) + 4e^- \longrightarrow 4OH^-(aq)$ Overall: $2H_2(g) + O_2(g) \longrightarrow 2H_2O(l)$

$$E_{\text{cell}}^{\circ} = E_{\text{cathode}}^{\circ} - E_{\text{anode}}^{\circ}$$
$$= 0.40 \text{ V} - (-0.83 \text{ V})$$
$$= 1.23 \text{ V}$$

ELECTROLYSIS


- *Electrolysis* the use of electric energy to drive a nonspontaneous chemical reaction
- *Electrolytic cell* the cell used to carry out electrolysis
 - same principles apply to both galvanic and electrolytic cells
 - in aqueous solutions you must also consider the oxidation or reduction of water

Anode (oxidation): $2Cl^{-}(l) \longrightarrow Cl_{2}(g) + 2e^{-}$ Cathode (reduction): $2Na^{+}(l) + 2e^{-} \longrightarrow 2Na(l)$ Overall: $2Na^{+}(l) + 2Cl^{-}(l) \longrightarrow 2Na(l) + Cl_{2}(g)$

CORROSION

- *Corrosion* generally refers to the deterioration of a metal by an electrochemical process.
- Many metals undergo corrosion e.g. corrosion of Fe, oxidation of Al
- Can be enhanced by atmospheric conditions (e.g. acidic medium)

PREVENTING CORROSION

- Electrochemical processes can be used to prevent corrosion
 - **Passivation** formation of a thin oxide layer by treating with an oxidizing agent
 - Formation of an alloy
 - Coating with a layer of a less active metal
 - Tin cans
 - Galvanization (zinc-plating)
 - Zinc oxide coating constitutes the protective coating

KEY CONCEPTS

- Batteries
 - Dry cell and alkaline batteries
 - Lead storage battery
 - Lithium-ion batteries
 - Fuel cells
- Electrolysis
 - Molten salts
 - Aqueous solutions
- Corrosion
 - Metal deterioration
 - Prevention