Chapter 1 - Matter and Measurement

Section 3 - Temperature and Density

> Dr. Sapna Gupta

Introduction

- Temperature is the measure of heat.
- There are three units for measuring temperature: degree centigrade or Celsius (${ }^{\circ} \mathrm{C}$), degree Fahrenheit (${ }^{\circ} \mathrm{F}$) and Kelvin (K).
- Density is a secondary unit, which means a unit from calculation of two units, in this case mass and volume. Density is mass per volume unit.
- A secondary unit can also be area (cm^{2}) or pressure (force/unit area).

Temperature Scale

Temperature is the measure of hotness. Heat flows from higher temperature to lower temperatures. Of the three units, Kelvin is the SI unit.

Units:

Celsius, ${ }^{\circ} \mathrm{C}$ Fahrenheit, ${ }^{\circ} \mathrm{F}$ Kelvin, K

$$
\begin{aligned}
& \text { Temperature Unit } \\
& \text { Conversions: } \\
& \begin{array}{l}
{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) \times 0.56 \\
{ }^{\circ} \mathrm{F}=\left(1.8 \mathrm{x}{ }^{\circ} \mathrm{C}\right)+32 \\
\mathrm{~K}={ }^{\circ} \mathrm{C}+273
\end{array}
\end{aligned}
$$

Solved Problem:

In winter, the average low temperature in interior Alaska is $-36.2^{\circ} \mathrm{F}$. What is this temperature in degrees Celsius and in Kelvin?

$$
\begin{aligned}
& { }^{\circ} \mathrm{C}=\left({ }^{\mathrm{O}} \mathrm{~F}-32\right) \times 0.56 \\
& { }^{\circ} \mathrm{F}=\left(1.8 \mathrm{x}^{\mathrm{o}} \mathrm{C}\right)+32 \\
& \mathrm{~K}={ }^{\circ} \mathrm{C}+273
\end{aligned}
$$

$$
\begin{aligned}
{ }^{\circ} \mathrm{C} & =\left({ }^{\circ} \mathrm{F}-32\right) \times 0.56 \\
& =(-36.2-32) \times 0.56 \\
& =-68.2 \times 0.56 \\
& =-38.192 \\
& =-38.2^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{K} & ={ }^{\circ} \mathrm{C}+273 \\
& =-38.192+273 \\
& =234.808 \\
& =235 \mathrm{~K}
\end{aligned}
$$

Derived or Secondary Units

These are a combination of the same unit (m^{2}) or two different units (g / mL).

Quantity	Definition of Quantity	SI Unit
Area	length \times length	m^{2}
Volume	length \times length \times length	m^{3}
Density	mass per unit volume	$\mathrm{kg} / \mathrm{m}^{3}$
Speed	distance per unit time	m / s
Acceleration	change in speed per unit time	$\mathrm{m} / \mathrm{s}^{2}$

Density

- Density gives an idea of how dense a substance is. As an example: a cork will float on water, but stone will sink in water; this implies that cork is lighter or less dense that water, but stone is denser or heavier than water.
- Mathematically density can be calculated as mass per unit volume.
- The units for density can be $\mathrm{g} / \mathrm{cm}^{3}$ (solids), g / mL (liquids and gases).

Some densities:
Aluminum - $2.7 \mathrm{~g} / \mathrm{cc}$
Iron $-7.87 \mathrm{~g} / \mathrm{cc}$
Gold - $19.3 \mathrm{~g} / \mathrm{cc}$
Oil - about $0.80 \mathrm{~g} / \mathrm{mL}$

Density is calculated by dividing mass by volume. Make sure you have the correct units.

$$
d=\frac{m}{V}
$$

Solved Problem: Calculating density

Oil of wintergreen is a colorless liquid used as a flavoring. A 23.2 g sample of oil of wintergreen has a volume of 20.7 mL . What is the density of oil of wintergreen?

$$
d=\frac{m}{V} \quad d=\frac{23.2 \mathrm{~g}}{20.7 \mathrm{~mL}}=1.12 \mathrm{~g} / \mathrm{mL}
$$

Solved Problem: Calculating volume using density

A sample of gasoline has a density of $0.325 \mathrm{~g} / \mathrm{mL}$. What is the volume of 460. g of gasoline?

$$
d=\frac{m}{V} \quad V=\frac{m}{d} \quad \mathrm{~V}=\frac{460 \mathrm{~g}}{0.325 \frac{\mathrm{~g}}{\mathrm{~mL}}}=1415.38 \mathrm{~mL}=1.42 \times 10^{3} \mathrm{~mL}
$$

Key Words/Concepts

- Temperature
- Density

