Chapter 2 – Atomic Structure and Nomenclature

Section 3 - Nomenclature

Dr. Sapna Gupta

1

Introduction

Nomenclature is the fundamental of any chemistry education. You have already learned about element names and their symbols. Now we will combine these elements to form compounds.

Compounds are formed when elements combine (form bonds) in different ratios. How are those ratios determined? Can any two elements form a compound? This and many more questions will be answered in this section.

We will learn the following nomenclature:

- Ionic compounds nomenclature: two types for ionic one for main group metals and one for transition metals.
- Covalent compounds nomenclature.
- Naming using polyatomic ions (cations and anions).
- Nomenclature of acids and bases.
- Nomenclature of hydrates.
- Names of some common compounds.

<u>Naming Ionic Compounds – Main Group</u> <u>continued</u>

Compound formed is electrically neutral so the sum of the charges on the cation(s) and anion(s) in each formula unit must be zero.

If there is only 1 atom, that 1 is not written e.g., in NaCl it is understood that Na is 1 atom and Cl is 1 atom.

Solved Problem: naming ionic compounds Name the following compounds. CaF₂ K₂O

CaF₂ – calcium fluoride

K₂0 – potassium oxide

Note: you cannot tell how many fluorine atoms or potassium atoms in the names above because these are main group metals which have specific charges that do not change. They can form compounds in ONE set ratio.

Polyatomic Ions

- These are ions (cations and anions) formed from multiple combinations of nonmetals.
- Only one polyatomic ion is a cation.
- Most polyatomic ions are anions meaning they have excess electrons. (Where are these excess electrons coming from? From the metals they combine with).

Positive Polyatomic Cations

 H_3O^+ hydronium ion (*exists only in acidic solutions*) NH_4^+ ammonium ion (formed from NH_3 : ammonia)

Simple Polyatomic Anions OH⁻ hydroxide CN⁻ cyanide

<u>Polyatomic Ions Containing Oxygen</u> (all end in "ate" or "ite")

Formula	Name	Formula	Name
CO ₃ ²⁻	Carbonate	CrO ₄ ² ·	Chromate
HCO ₃ -	Hydrogen carbonate	$Cr_2O_7^{2-}$	Dichromate
S04 ² .	Sulfate	MnO ₄ ·	Permanganate
HSO ₄ -	Hydrogen sulfate	SCN ⁻	Thiocyanate
SO ₃ ²⁻	Sulfite	S ₂ O ₃ ² ·	Thiosulfate
HSO ₃ .	Hydrogen sulfite	ClO [.]	Hypochlorite
NO ₃ .	Nitrate	ClO ₂ -	Chlorite
NO ₂ -	Nitrite	ClO ₃ ·	Chlorate
PO ₄ ³ ·	Phosphate	ClO ₄ ·	Perchlorate
HPO42-	Hydrogen phosphate		
H ₂ PO ₄ ·	Dihydrogen phosphate		
$C_2H_3O_2$	Acetate		
CH ₃ COO ⁻			
Dr. Sapna Gupta/N	omenclature		11

Naming Covalent Compounds		
• Combination of nonmetals gives covalent compounds.	Number	Prefix
 The first element is named as it is and the second one ends with "ide". 	1	mono
• In many cases of covalent compounds, more than one	2	di
combination of nonmetals is possible, hence "mono",	3	tri
"di" etc. are used to indicate how many atoms are in the compound.	4	tetra
• Note: if the first element is only one then don't	5	penta
indicate as "mono".	6	hexa
Example:	7	hepta
• NO nitrogen monoxide	8	octa
• NO ₂ nitrogen dioxide	9	nona
• N ₂ 0 dinitrogen monoxide	10	deca
• NO ₃ nitrogen trioxide		
• N ₂ O ₄ dinitrogen tetraoxide		
• P ₂ S ₅ diphosphorous pentasulfide		
Dr. Sapna Gupta/Nomenciature		13

Acids and Bases

Acids and bases are a class of compounds on their own. We will learn more about them in later chapters. For now, you need to be able to recognize a compound as acid or base and name them. Below are some of the properties of acids and bases and some examples.

Acids
 Give protons Corrosive Sour Reacts with metals to give H₂ gas Found in fruit juices Examples: <u>Strong acids</u> - Sulfuric acid, nitric acid, hydrochloric acid. <u>Weak acids</u> - phosphoric acid, acetic acid, carbonic acid.

here are	wo kinds of acids – bina	ary and ox	o-acids.	
inary acio 1ey are al re only tv	ls are formed from the g so called haloacids. The vo elements in it HX (X s	group VII e y are cons tands for l	lements, halogens. Fo dered binary acids be nalogen).	or this reason ecause there
xoacids h	ave oxygen in them and c ions (see then next slid	usually fo le for spec	rmed by addition of p fic examples).	protons to
oryatomi		1 (
he table l lost com	pelow gives you some ex non oxoacids.	amples of	all the binary acids a	nd some of the
he table l lost comr Binar Made disso	pelow gives you some ex non oxoacids. y acids (Haloacids) from hydrogen halide ived in water	Oxoae Made anion	all the binary acids a ids from polyatomic s.	nd some of the
he table l lost comi Made disso HF	pelow gives you some ex non oxoacids. y acids (Haloacids) from hydrogen halide lved in water Hydrofluoric acid	Oxoae Made anion HNO ₃	all the binary acids an ids from polyatomic s. Nitric acid	nd some of the
Binar Made disso HF HCl	pelow gives you some ex non oxoacids. y acids (Haloacids) from hydrogen halide wed in water Hydrofluoric acid Hydrochloric acid	Oxoae Made anion HNO ₃ H ₂ SO ₄	all the binary acids an ids from polyatomic s. Nitric acid Sulfuric acid	nd some of the
he table l lost comi Made disso HF HCl HBr	pelow gives you some ex non oxoacids. y acids (Haloacids) from hydrogen halide lved in water Hydrofluoric acid Hydrochloric acid Hydrochloric acid	Amples of Oxoac Made anion HNO ₃ H ₂ SO ₄ H ₃ PO ₄	all the binary acids an ids from polyatomic s. Nitric acid Sulfuric acid Phosphoric acid	nd some of the

Formula	Name	H⁺ added	Oxoacid	Name
CO ₃ ²⁻	Carbonate	+2H*	H_2CO_3	Carbonic acid
HCO ₃ -	Hydrogen carbonate			
SO4 ²⁻	Sulfate	+2H*	H ₂ SO ₄	Sulfuric acid
HSO ₄ -	Hydrogen sulfate			
SO ₃ ²⁻	Sulfite			
HSO ₃ -	Hydrogen sulfite			
NO ₃ -	Nitrate	+H+	HNO ₃	Nitric acid
NO ₂ -	Nitrite			
PO ₄ ³⁻	Phosphate	+3H+	H ₃ PO ₄	Phosphoric acid
HPO ₄ ²⁻	Hydrogen phosphate			
H ₂ PO ₄ -	Dihydrogen phosphate			
C ₂ H ₃ O ₂ - CH ₃ COO-	Acetate	+H*	HC ₂ H ₃ O ₂ CH ₃ COOH	Acetic acid

Naming Bases

Most bases are hydroxides: e.g. sodium hydroxide (NaOH), potassium hydroxide (KOH), aluminum hydroxide (Al(OH) $_3$).

Some other bases are carbonates and hydrogen carbonates (these are weaker bases) e.g.: sodium carbonate (Na $_2$ CO $_3$), sodium hydrogen carbonate (NaHCO $_3$), sodium sulfite (NaHSO $_3$) etc.

Dr. Sapna Gupta/Nomenclature

Formula	Common name	IUPAC Name
H ₂ 0	Water	Dihydrogen monoxide
NaCl	Salt	Sodium chloride
CH ₄	Methane	methane
CO ₂	Dry ice	Carbon dioxide (solid)
NH ₃	Ammonia	Trihydrogen nitride
CaCO ₃	Marble, chalk	Calcium carbonate
$MgSO_4 \bullet 7H_2O$	Epsom salt	Magnesium sulfate heptahydrate
Mg(OH) ₂	Milk of magnesia	Magnesium hydroxide

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>