Chapter 5 - Gases

Section 3 - Stoichiometry, Speed of Gases and Real Gases

Dr. Sapna Gupta

Introduction - Gas Stoichiometry

Just like we study stoichiometry in reactions with solids and solutions, we can also study the amounts of gaseous reactants and products by using the ideal gas law.

- The ideal gas law to relate moles to T, P and V.
- Moles can be related to mass by the molar mass.
- The coefficients in the balanced equation to relate moles of reactants and products.

Solved Problem: Gas Stoichiometry

When a 2.00 L bottle of concentrated HCl was spilled, 1.20 kg of CaCO_{3} was required to neutralize the spill. What volume of CO_{2} was released by the neutralization at 735 mmHg and $20.0^{\circ} \mathrm{C}$?

Step 1 First, write the balanced chemical equation.

$$
\mathrm{CaCO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Step 2 Molar mass of $\mathrm{CaCO}_{3}=100.09 \mathrm{~g} / \mathrm{mol}$
Step 3 Use stoichiometry to find mols of CO_{2}.
$1.2 \times 10^{3} \mathrm{~g} \mathrm{CaCO}_{3} \frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{100.09 \mathrm{~g} \mathrm{CaCO}_{3}} \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CaCO}_{3}}=11.99 \mathrm{~mol}$
Step 4 Use gas law to find the volume of the gas.
$n=11.99 \mathrm{~mol}$
$P=735 \mathrm{mmHg} / 760 \quad \mathrm{~V}=\frac{\mathrm{nRT}}{\mathrm{P}}$

$$
\mathrm{V}=\frac{(11.99 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(293 \mathrm{~K})}{(0.967 \mathrm{~atm})}
$$

$T=20^{\circ} \mathrm{C}+273=293 \mathrm{~K}$

$$
=2.98 \times 10^{2} \mathrm{~L}
$$

Solved Problem: Gas Stoichiometry

Calculate the mass of KClO_{3} decomposed when 325 mL of oxygen was produced at $22.0^{\circ} \mathrm{C}$ and a pressure of 733 torr. Calculate the number of moles of O_{2} and the mass of KClO_{3} decomposed.

$$
2 \mathrm{KClO}_{3(s)} \rightarrow 2 \mathrm{KCl}_{(s)}+3 \mathrm{O}_{2(g)}
$$

Step 1 Find mols of O_{2} using ideal gas law

$$
\begin{aligned}
& P_{\mathrm{O}_{2}}=733 \text { torr convert to atm }=(733 / 760) \mathrm{atm}=0.964 \mathrm{~atm} \\
& V=325 \mathrm{~mL}=0.325 \mathrm{~L} \\
& T=22^{\circ} \mathrm{C}+273=295 \mathrm{~K}
\end{aligned}
$$

$$
n=\frac{P V}{R T} \quad \mathrm{n}_{\mathrm{O}_{2}}=\frac{(0.964 \mathrm{~atm})(0.325 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(295 \mathrm{~K})}=1.29 \times 10^{-2} \mathrm{~mol} \mathrm{O}_{2}
$$

Step 2 Use stoichiometry to find grams of KClO_{3}.

$$
\text { Molar mass of } \mathrm{KClO}_{3}=122.6 \mathrm{~g} / \mathrm{mol}
$$

$$
1.29 \times 10^{-2} \mathrm{~mol} \mathrm{O}_{2}\left(\frac{2 \mathrm{~mol} \mathrm{KClO}_{3}}{3 \mathrm{~mol} \mathrm{O}_{2}}\right)\left(\frac{122.6 \mathrm{~g} \mathrm{KClO}_{3}}{1 \mathrm{~mol} \mathrm{KClO}}\right)=1.06 \mathrm{~g} \mathrm{KClO}_{3}
$$

Solved Problem: Gas Stoichiometry with volumes

How many liters of CO_{2} gas can be produced in the reaction of 5.24 L CO and $2.65 \mathrm{~L} \mathrm{O}_{2}$ gas if all gases are measured at the same temperature and pressure?

Step 1 First, write the balanced chemical equation.

$$
2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)
$$

Step 2 Determine limiting reagent since both starting volumes are given.
$n=P V \quad \mathrm{~T}$ and P are constant, and R is the same in ideal gas law so, number of moles = volume of gas.
Now we can use mol ratio to determine limiting reagent.

$$
\begin{aligned}
& 5.24 \mathrm{~L} \mathrm{CO} x \frac{2 \mathrm{~L} \mathrm{CO}_{2}}{2 \mathrm{~L} \mathrm{CO}}=5.24 \mathrm{~L} \mathrm{CO}_{2} \\
& 2.65 \mathrm{~L} \mathrm{O} \times \frac{2 \mathrm{~L} \mathrm{CO}_{2}}{1 \mathrm{~L} \mathrm{O}}=5.30 \mathrm{~L} \mathrm{CO}_{2}
\end{aligned}
$$

Limiting reagent is CO , so volume of CO_{2} gas is 5.24 L .

Solved Problem: Gas Stoichiometry

A 100 g sample of aqueous hydrogen peroxide solution decomposes over time, producing 3.31 L of O_{2} at $21.0^{\circ} \mathrm{C}$ and 715 mmHg . What was the mass percent of $\mathrm{H}_{2} \mathrm{O}_{2}$ in the solution?

$$
2 \mathrm{H}_{2} \mathrm{O}_{2(a q)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{O}_{2(g)}
$$

$P=715 \mathrm{mmHg} / 760=0.941 \mathrm{~atm}$
$T=21^{\circ} \mathrm{C}+273=294 \mathrm{~K}$
$\mathrm{V}=3.31 \mathrm{~L} \mathrm{O}_{2}$

Equation: $2 \mathrm{H}_{2} \mathrm{O}_{2(a q)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{O}_{2(g)}$ mass percent? 3.31 L
Strategy: $\mathrm{Mol} \mathrm{O}_{2}->\mathrm{mol} \mathrm{H}_{2} \mathrm{O}_{2}->\mathrm{g} \mathrm{H}_{2} \mathrm{O}_{2}$

Step 1 Find mols of O_{2} using ideal gas law
$n=\frac{P V}{R T} \quad \mathrm{n}_{\mathrm{O}_{2}}=\frac{(0.941 \mathrm{~atm})(3.31 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(294 \mathrm{~K})}=0.129 \mathrm{~mol} \mathrm{O}_{2}$
Step 2 Use stoichiometry to find grams of $\mathrm{H}_{2} \mathrm{O}_{2}$.
$0.129 \mathrm{~mol} \mathrm{O}_{2}\left(\frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}\right)\left(\frac{34.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}}\right)=8.78 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$
Step 2 Find mass percent of $\mathrm{H}_{2} \mathrm{O}_{2} . \quad \frac{8.78 \mathrm{~g}}{100 \mathrm{~g}} \times 100 \%=8.78 \% \mathrm{H}_{2} \mathrm{O}_{2}$

Speed of Gas

- Effect of Temperature on Molecular Speed (1 $1^{\text {st }}$ graph) - speed of gas is directly proportional to temperature.
- Effect of Molar Mass on Molecular Speed (2 ${ }^{\text {nd }}$ graph) - speed of gas is inversely proportional to molecular/atomic weight.

Diffusion and Effusion

Diffusion	Effusion
The process whereby a gas spreads out through another gas to occupy the space uniformly. Example would be gases from the atmosphere interacting with ocean. Below molecules diffuses through air.	The process by which a gas flows through a small hole in a container. An example would be a pinprick in a container.

Real Gases

At high pressure the relationship between pressure and volume does not follow Boyle' s law.

At high pressure, some assumptions of the kinetic theory no longer hold true. At high pressure:

1. the volume of the gas molecule is not negligible.
2. the intermolecular forces are not negligible.

The term V becomes $(V-n b)$ to account for the space between molecules.
The term P becomes $\left(P+n^{2} a / V^{2}\right)$ to account for attraction/repulsion between molecules.

Values for a and b are different for different gases and can be found in data tables.
Van der Waal rewrote the he ideal gas equation to accommodate these deviations.
$\mathrm{PV}=n \mathrm{RT}$ becomes $\left(\mathrm{P}+\underset{\mathrm{V}^{2}}{\mathrm{~V}^{2}}\right) \quad(\mathrm{V}-n \mathrm{~b})=\mathrm{RT}$

Key Points

- Gas stoichiometry
- Gas mixtures
- Molecular speed
- Diffusion and effusion
- Deviation from ideal behavior
- Factors causing deviation

