Chapter 8 - Electron Configurations and Periodicity

Section 3 - Periodic Properties

Dr. Sapna Gupta

Introduction – Periodic Properties

Periodicity is being able to predict some trends in the periodic table. While designing the periodic table Mendeleev noticed that groups had similar chemical properties. Initially the periodic table had been arranged by atomic weight but was later changed by Mendeleev to atomic numbers. This was done because of the observation about the chemical properties.

The periodic table, as designed, has a number of trends in the rows and groups. The main trends we will study here are: Atomic radii, Ionization energy and Electron affinity. We will also see how metallic nature of elements changes in the periodic table.

One thing to keep in mind is that all these trends are for the main group elements, groups I – VIII, and does not include transition metals, lanthanides and actinides.

Effective Nuclear Charge (Z_{eff})

All the periodic trends are dependent on Effective Nuclear Charge, which also has a trend in the periodic table.

Effective nuclear charge is the attraction of valence electrons (VE) to the positive nucleus. The trend then is that effective nuclear charge increases across the row and decreases going down a group.

	Increasing Z _{off}																		
Г		1 H			_	_	_	_	_	e en		_	ļ						2 He
		3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
7 2 2 2	IIS 2ef	11 Na	12 Mg	IIIB	13 14 15 16 17 IIIB IVB VB VIB VIB VIIIB IB IIB IB IB III													17 Cl	18 Ar
100000		19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
Č		37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
		55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn

Effective Nuclear Charge (Z_{eff}) - Explanation

Trend in the row: As electrons are added to the same shell the Z_{eff} increases because the number of electrons added are in the same valence shell and the number of protons are also increasing, thus the positive-negative attraction increases. As in the example shown on the right, Be has 2 VE with 4 protons, whereas C has 4 VE with 6 protons, thus attraction of 6p to 4 VE of C is much more than of 4p to 2 VE of Be.

Trend in a group: As electrons are added to a shell farther away from the nucleus the Z_{eff} decreases. In the example on the right, in Mg, the valence shell is farther away from the nucleus thus the VE to proton attraction is not as much as in Be.

<u>The Trends: Atomic Radii; Ionization</u> <u>Energy; Electron Affinity; Metallic Character</u>

- Atomic radius is half the distance between two nuclei next to each other .
- <u>Ionization Energy</u> is the amount of energy required to remove one electron from an atom in a gas phase.
- <u>Electron Affinity</u> is the measure of energy change when an electron is added to a valence shell. A negative energy measurement means an anion is formed and positive energy measurement means cation is formed.
- <u>Metallic Character</u> is how much a metal behaves like a metal i.e., conducts electricity and heat, malleability, reactivity with acids etc.

<u>Atomic Radii</u>

<u>Atomic radius</u> is half the distance between two nuclei next to each other.

The trend is that atomic radii decreases in a row of the periodic table and increases down a group.

Why does this happen? As we go across a row, effective nuclear charge increases, thus the attraction of VE to protons/nucleus increases making the atomic radii smaller.

When going down a group, the shell number of the VE increases making the attraction between the VE and protons/nucleus much smaller and thus making the atom larger.

Atomic Radii

Shutterstock Image

Solved Problem: Arranging in atomic radius

Refer to a periodic table and arrange the following elements in order of increasing atomic radius: Br, Se, Te.

Te is larger than Se. Se is larger than Br.

Atomic radius: Br < Se < Te

Solved Problem: Arranging in atomic radius

Refer to a periodic table and arrange the following elements in order of increasing atomic radius: As, Br, Sb.

Ionization Energy

<u>Ionization Energy (IE)</u> is the amount of energy required to remove one electron from an atom in a gas phase.

The trend is that IE increases in a row of the periodic table and decreases down a group.

Why does this happen? As we go across a row, effective nuclear charge increases, thus the attraction of VE to protons/nucleus increases, making it hard to remove the valence electron.

When going down a group, the VE is in a shell farther away from the nucleus making the attraction between the VE and protons/nucleus much smaller and thus making it easier to remove an electron from the valence shell.

Ionization Energy

									Ir	icrea	sing	g Z _{eff}			\Rightarrow						
	Increasing Ionization Energy															-					
		.By		1 H																	2 He
	=	n Ener		3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
ing 7	197 9 11	zatior		11 Na	12 Mg	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
SEGUJ		lg Ioni		19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
J.	5	reasin		37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
		Dec		55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn

Ionization Energy

Ionization Energy – 2nd, 3rd and more

Once the 1st VE is removed, it becomes harder to remove the next electron (this would be the 2nd IE), as the Z_{eff} is much larger because the number of protons attracting the remaining number of electrons is much higher. The 3rd IE is even larger. One can see from the data below that once the entire valence shell is removed, it is extremely hard to remove from the remaining cation, e.g., see the high IE values of the 2nd IE of Li and the 4th IE of B.

Element	First	Second	Third	Fourth	Fifth	Sixth	Seventh
Н	1312						
Не	2372	5250					
Li	520	7298	11,815				
Ве	900	1757	14,848	21,006			
В	801	2427	3660	25,026	32,827		
С	1086	2353	4620	6223	37,831	47,277	
Ν	1402	2856	4578	7475	9445	53,326	64,360
0	1314	3388	5300	7469	10,990	13,326	71,330
F	1681	3374	6050	8408	11,023	15,164	17,868
Ne	2081	3952	6122	9371	12,177	15,238	19,999

Solved Problem: Arranging in ionization energy

Refer to a periodic table and arrange the following elements in order of increasing ionization energy: Br, Se, Te.

Te has lower IE than Se. Se has lower IE than Br.

Ionization energies : Te < Se < Br

Solved Problem: Arranging in ionization energy

Refer to a periodic table and arrange the following elements in order of increasing ionization energy: As, Kr, K.

Electron Affinity

<u>Electron Affinity</u> (EA) is the measure of energy released when an electron is added to a valence shell. A higher energy measurement means more energy is released and lower energy measurement means less energy is released.

			ncreasi	ng Ele	ctron A	ffinity			
		IA	IIA	IIIA	IVA	VA	VIA	VIIA	VIIIA
	Row 1	Н	1						Не
Ŋ		73	1						≤ 0
ini									
Vff	Row 2	Li	Be	В	С	N	0	F	Ne
u /		60	≤ 0	27	122	≤ 0	141	328	≤ 0
ro									
SCT	Row 3	Na	Mg	Al	Si	Р	S	Cl	Ar
E		53	≤ 0	44	134	72	200	349	≤ 0
50									
SII	Row 4	К	Са	Ga	Ge	As	Se	Br	Kr
.ea		48	2	41	119	78	195	325	≤ 0
SCI									
Õ	Row 5	Rb	Sr	In	Sn	Sb	Те	Ι	Хе
		47	5	37	107	101	190	295	≤ 0
	Row 6	Cs	Ba	Tl	Pb	Bi	Ро	At	Rn
		46	14	36	35	91	180	270	≤ 0

Metallic Character

<u>Metallic character is when elements follow a lot of the characteristics given in</u> <u>the first column in the table below.</u>

The trend is that metallic character decreases in a row of the periodic table and increases down a group. Some of it has to do with IE and EA trends.

Metallic Character	Nonmetals	Metalloids
 Shiny, lustrous, malleable Good conductors Low <i>IE</i> (form cations) Form ionic compounds with chlorine Form basic, ionic compounds with oxygen 	 •Vary in color, not shiny •Brittle •Poor conductors •Form acidic, molecular compounds with oxygen •High <i>EA</i> (form anions) •Group VII and VIII are all non metals 	•Properties both of metals and nonmetals

Solved Problem: Arranging in electron affinity

Refer to a periodic table and arrange the following elements in order of increasing electron affinity: Br, Se, Te.

Br more than Se. Te less than Se.

Electron Affinity: Te < Se < Br

Solved Problem: Arranging in metallic character

Refer to a periodic table and arrange the following elements in order of increasing metallic character: As, Br, Sb.

Trends

Trend	Definition	Across a Group	Down a Group
Effective nuclear charge	This is the attraction of negative electrons to the positive nucleus	Increases Because electrons are added to the same shell	Decreases Because electrons are added to a new shell
Atomic radii	Atomic radius is half the distance between two nuclei	Decreases Because electrons are added to the same shell	Increases Electrons are added to a new shell
Ionization energy	IE is the amount of energy required to eject one electron from an atom in a gas phase	Increases Z increases, so harder to remove an electron	Decreases Z decreases so easy to remove an electron
Electron affinity	EA is the measure of energy released when an electron is added to a valence shell	Increases easier to gain electrons	Decreases harder to add electrons
Metallic Character	how much a metal behaves like a metal e.g. conducts electricity and heat, malleability etc.	Decreases Z increases so harder to lose electrons	Increases Z decreases so easier to lose electrons

<u>Ionic Radii</u>

<u>**Cations**</u> have lost electrons hence the number of protons are more than electrons, Z_{eff} is higher and thus the cationic radii gets smaller

<u>Anions</u> have accepted electrons hence the number of protons is less than electrons, Z_{eff} is lower and thus the anionic radii gets larger

Solved Problem: Arranging in ionic radius

Refer to a periodic table and arrange the following elements in order of increasing ionic radius: Br⁻, Se²⁻, Te²⁻.

34 Se ²⁻	35 Br-	Te ²⁻ is larger than Se ²⁻ : because it is below Se in the PT. Se ²⁻ is larger than Br ⁻ : because it is	Ionic radius: Br ⁻ < Se ²⁻ < Te ²⁻
52 Te ²⁻		in the same row and accepting more electrons than Br.	

Solved Problem: Arranging in ionic radius

Refer to a periodic table and arrange the following elements in order of increasing ionic radii: K⁺, Cl⁻, P³⁻, Ca²⁺.

15	17
P ³⁻	Cl-
19	20
K⁺	Ca ²⁺

All these elements are isolectric. The best way to figure out size is by their effective nuclear charge – i.e. the number of protons and electrons. If protons are more then Z_{eff} is more and vice versa. K⁺ larger than Ca^{2+} i.e. Z_{eff} is more for Ca^{2+} because Ca^{2+} has 18 e⁻ and 20 p while K⁺ has 18 e⁻ and 19 p P³⁻ larger than Cl⁻ K⁺ smaller than Cl⁻

Ionic radii: Ca²⁺ < K⁺ < Cl⁻ < P³⁻

						D	ecre	asin	g Ate	omic	c Rac	lii									\rightarrow		
	٦			٦			Ir	ncrea	asing	g Ior	nizat	ion l	Ener	gy							\rightarrow		
	rgy			1				Inc	crea	sing	Elec	tron	Affi	nity									
	Ene	Ity							De	crea	sing	Met	allic	Cha	ract	er					K		
	tion	ffini	1040	crer						Inc	creas	sing	Z _{off}			->					V		
ng A	nizal	ron A	Chord	harad		1 H	1 H												2 Но				
easi	ol g	lect		כו		п 3	4]										5	6	7	8	9	пе 10
ncr	asin	1g E		erall		Li	Be											B	C	Ň	0	F	Ne
	Decre	reasi	M 204		ng Z _{efi}	11 Na	12 Mg	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
		Dec	00000	creas	reasi	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
			2	Ē	Ded	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
						55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
X				Z						Dr. S	apna Gu	pta/Peric	odic Proj	perties 2								20	

Acidic and Basic Properties of the Groups

- Groups I and II all metals
- Groups VII and VIII all nonmetals
- Transition metals all metals
- Groups III, IV, V and VI has nonmetals, metalloids and metals.
- Oxides: dissolving oxides in water give bases and acids.
 - Metal oxides give bases
 - Nonmetal oxides give acids
 - Amphoteric oxides can give both acids and bases

Reactions of Oxides

• Metal oxides will produce bases on reaction with water.

 $Na_2O_{(s)} + H_2O_{(l)} \longrightarrow 2NaOH_{(aq)}$

• Nonmetal oxides will produce acids when dissolved in water.

 $SO_{3(g)} + H_2O_{(l)} \longrightarrow 2H_2SO_{4(aq)}$

• Amphoteric oxides are located at intermediate positions on the periodic table and can react with both acids and bases.

 $Al_2O_{3(s)} + 6HCl_{(aq)} \longrightarrow 2AlCl_{3(aq)} + 3H_2O_{(l)}$

 $Al_2O_{3(s)} + 2NaOH_{(aq)} + 3H_2O_{(l)} \longrightarrow 2NaAl(OH)_{4(aq)}$

Solved Problem: Identifying acidic or basic oxides/elements

Determine if the following elements or oxides will be acidic or basic when dissolved in water.

a) Al

b) NO₂

c) Fe_2O_3

d) Ca

e) C

- a) Al metal should form base in water
- b) NO₂ nonmetal should form acid in water
- c) Fe_2O_3 metal should form base in water
- d) Ca metal should form base in water
- e) C nonmetal should form acid in water

Group Properties

Alk	Group kali Me	I etals		Group Alkali	Group I					
			Ea	arth M	etals					
	3			4			5			
	Li			Be			В			
	6.941			9.012			10.81			
	11			12			13			
	Na			Mg			Al			
	22.98			24.31			26.98			
	19			20			31			
	K			Ca			Ga			
	39.1			40.08		-	69.72			
	37			38			49			
	Rb			Sr			In			
	85.47			87.62			114.8			
	55			56			81			
	Cs			Ba			TI			
	132.9			137.3			204.4			
	87			88			113			
	Fr			Ra			Nh			
	223			226			[266]			

Group 1

- All elements are metals.
- Never found in nature in elemental state
- All metals very reactive have to be stored in special containers.
- All metals are very soft (unlike typical metals)

Group II

- All elements are metals.
- Less reactive than group I.
- Some react with acids to form hydrogen gas.

Group III

- Metalloid (B) and metals (all others)
- Al forms Al₂O₃ with oxygen and is an amphoteric oxide

Group IV Properties

1	roup	
	6	
	С	
	12.01	
	14	
	Si	
	28.09	
	32	
	Ge	
	72.63	
	50	
	Sn	
	118.7	
	82	
	Pb	
	207.2	
	114	
	Fl	
	[289]	

- Most interesting group since it has two main elements.
- One that makes organic substances carbon.
- And one that makes all electronics silicon.
- This group has nonmetal (C) metalloids (Si, Ge) and metals.
- This group can have acidic oxides (C), amphoteric oxides (Si, Ge) and basic oxides (Sn, Pb).
- Carbon has three main allotropes (same element with different molecular structure): diamond, graphite and buckminsterfullerene. Graphite is a soft amorphous solid, diamond is the hardest substance on earth and buckminsterfullerene is literally out of this world.

Group Properties

G	roup V	y G	roup \	/I G	Group VII Halogens					
[7		8		٩					
			Ô		F					
	IN		0		Г					
	14.01		15.99		18.99					
	15		16		17					
	Р		S		Cl					
	30.97		32.07		35.45					
	33		34		35					
	As		Se		Br					
	74.92		78.96		79.9					
	51		52		53					
	Sb		Te		I					
	121.8		127.6		126.9					
	83		84		85					
	Bi		Ро		At					
	209		[209]		[210]					
	115		116		117					
	Mc		Lv		Ts					
	[289]		[293]		[294]					

Group V

- Nonmetal (N₂, P) metalloid (As,Sb) and metal (Bi).
- Nitrogen, N₂ forms variety of oxides.
- As, Sb, Bi (crystalline).
- Has acidic oxides N, P, As), amphoteric oxides (Sb) and basic oxides (Bi).

Group VI

- Nonmetals (O, S, Se).
- Metalloids (Te, Po).
- Oxides form acids; SO₂, SO₃, H₂S, H₂SO₄.

Group VII

- All nonmetals.
- All elements are diatomic molecules.
- Physical property trend is gas (F₂ and Cl₂), liquid (Br₂), solid (I₂).
- Halogens form acids (HX).

Group VIII Properties

2

Group VIII Noble Gases

_	
He	
4.003	
10	
Ne	
20.18	
18	
Ar	
39.95	
36	
Kr	
83.8	
54	
Xe	
131.3	
86	
Rn	
[222]	
118	
Og	
[294]	

- All monatomic
- Filled valence shells
- All are gases
- Considered "inert" until 1963 when Xe and Kr were used to form compounds
- No major commercial use

Key Words

- Effective nuclear charge
- Atomic radii
- Ionization energy
- Electron affinity
- Metallic character
- Ionic radii
- Isoelectric elements/ions
- Basic oxide
- Acidic oxide