Chapter 7 Atomic Structure -2 Quantum Numbers

Dr. Sapna Gupta

Quantum Numbers

According to quantum mechanics, each electron is described by four quantum numbers:

- 1. Principal quantum number (*n*)
- 2. Angular momentum quantum number (*l*)
- 3. Magnetic quantum number (m_l)
- 4. Electron spin quantum number (m_s)

The first three define the wave function for a particular electron. The fourth quantum number refers to the magnetic property of electrons.

A wave function for an electron in an atom is called an atomic orbital (described by three quantum numbers—n, l, m_l).

It describes a region of space with a definite shape where there is a high probability of finding the electron.

- Principal quantum number (n) designates size of the orbital
- Integer values: 1,2,3, and so forth
- The larger the "*n*" value, the greater the average distance from the nucleus
- Correspond to quantum numbers in Bohr's model

- Angular momentum quantum number (l) – shape of the atomic orbital
- Integer values: 0 to n-1
- 0 = s sublevel; 1 = p 2 = d 3 = f

Magnetic quantum number (m_l) – orientation of the orbital in space (think in terms of x, y and z axes)

٠

- Integer values: -l to 0 to + l
- There are 2e- in each orientation

Electron spin quantum number (m_s) – describes the spin of an electron that occupies a particular orbital

٠

٠

- **Values**: +1/2 or -1/2
- Electrons will spin opposite each other in the same orbital

TABLE 6.2	Allowed Values of the Quantum Numbers <i>n</i> , ℓ , and m_{ℓ}		
When <i>n</i> is	ℓ can be	When ℓ is	$m{m}_\ell$ can be
1	only 0	0	only 0
2	0 or 1	0 1	only 0 -1, 0, or +1
3	0, 1, or 2	0 1 2	only 0 -1, 0, or +1 -2, -1, 0, +1, or +2
4	0, 1, 2, or 3	0 1 2 3	only 0 -1, 0, or +1 -2, -1, 0, +1, or +2 -3, -2, -1, 0, +1, +2, or +3

•When *n* = 1, *l* has only one value, 0.

•When l = 0, m_l has only one value, 0.

So the first shell (n = 1) has one subshell, an *s*-subshell, 1*s*. That subshell, in turn, has one orbital; 2e⁻.

•When *n* = 2, *l* has two values, 0 and 1.

•When l = 0, m_l has only one value, 0. So there is a 2s subshell with one orbital; $2e^{-1}$.

•When l = 1, m_l has only three values, -1, 0, 1. So there is a 2p subshell with three orbitals; 6 e^{-1} .

•When *n* = 3, *l* has three values, 0, 1, and 2.

•When l = 0, m_l has only one value, 0. So there is a 3*s* subshell with one orbital; $2e^{-1}$.

•When l = 1, m_l has only three values, -1, 0, 1. So there is a 3p subshell with three orbitals, $6e^{-1}$.

•When l = 2, m_l has only five values, -2, -1, 0, 1, 2. So there is a 3d subshell with five orbitals; $10e^{-1}$.

Atomic View of Quantum Numbers

Quantum Numbers – another figure

Solved Problem: Which of the following are permissible sets of quantum numbers?

$$n = 4, l = 4, m_l = 0, m_s = \frac{1}{2}$$

$$n = 3, l = 2, m_l = 1, m_s = -\frac{1}{2}$$

$$n = 2, l = 0, m_l = 0, m_s = \frac{3}{2}$$

$$n = 5, l = 3, m_l = -3, m_s = \frac{1}{2}$$

- (a) Not permitted. When n = 4, the maximum value of l is 3.
- *(b)* Permitted.
- (c) Not permitted; m_s can only be $+\frac{1}{2}$ or $-\frac{1}{2}$.
- *(b)* Permitted.

Shapes of Atomic Orbitals

- An *s* orbital is spherical.
- A *p* orbital has two lobes along a straight line through the nucleus, with one lobe on either side.
- A *d* orbital has a more complicated shape.

s - orbital

The blue cross-sectional view of a 1*s* orbital and a 2*s* orbital highlights the difference in the two orbitals' sizes.

The purple color cutaway diagrams of the 1*s* and 2*s* orbitals give a better sense of them in three dimensions.

p and d orbitals

F-orbitals

Dr. Sapna Gupta/Quantum Numbers

All orbitals

Photo from UC - Davis

Key Points

- Quantum numbers (*n*, *l*, *m*_{*l*}, *m*_{*s*}) predict values and possible sets
- Shapes of orbitals