<u>Amines</u> 1 – Nomenclature, Properties and Applications

Dr. Sapna Gupta

Amines

Amines are organic derivatives of ammonia, $\rm NH_3$ with alkyl groups substituting the hydrogens.

The nitrogen atom has a lone pair of electrons, making amines both basic and nucleophilic.

Amines are classified as 1° (RNH₂), 2° (R₂NH), 3° (R₃N)

Nomenclature - Aliphatic - Primary

For IUPAC nomenclature change the suffix **-e** of the parent alkane to **-amine**. The general nomenclature follows the alkylamine naming. Below I have given the general names in italics.

CH ₃ NH ₂	CH ₃
methanamine	etha
methylamine	ethy

CH₃CH₂NH₂ ethanamine *ethylamine* CH₃CH₂CH₂NH₂ propanamine *propylamine*

In case of primary amines and long alkane chains, find the longest chain and give it the base name and locant number to amine group.

2-propanamine Isopropylamine 2-heptanamine

cyclohexanamine cyclohexylamine

Nomenclature - Secondary and Tertiary

In case of secondary and tertiary amines, identify the long alkane chain; the smaller alkyl group is written as a substituent on the nitrogen as N-alkyl group. For the general name name both the alkyl substituents alphabetically and end with amine. Again, the general names are given in italics.

CH₃NHCH₃ N-methylmethanamine *Dimethyl amine* CH₃CH₂NHCH₃ N-methylethanamine *ethylmethylamine* CH₃CH₂CH₂NHCH₃ N-methylpropanamine *methyl propylamine*

2-methyl-N-methyl propanamine methyl-sec-butylamine

(CH₃)₃N N, N-dimethylmethanamine *trimethylamine*

N-propylcyclohexanamine cyclohexylpropylamine

N-ethyl-N-methylpropanamine ethylmethylpropylamine

Nomenclature – with Substituents

Among the various functional groups discussed in the text, -NH₂ is not in any order of precedence. It is named alphabetically just like any other alkyl or halide group.

3-amino-2-chloro-6-methylheptane

1,5-pentanediamine

Nomenclature - Aromatic

When an amine group on benzene is present then use aniline as the base name unless there are other substituents taking precedence.

Nomenclature - Heterocyclic

There can be one N or two Ns in one ring. The ring can be aromatic or not.

Chirality of Amines

• Consider the unshared pair of electrons on nitrogen as a fourth group, then the arrangement of groups around N is approximately tetrahedral.

- An amine with three different groups bonded to N is chiral and exists as a pair of enantiomers and, in principle, can be resolved.
- In practice, however, they cannot be resolved because they undergo pyramidal inversion, which converts one enantiomer to the other.
- But if there are

Basicity of Amines

The lone pair of electrons on nitrogen makes amines basic and they react with acids to form acid-base salts.

- Amines are stronger bases than alcohols, ethers, or water.
- Most simple alkylammonium ions have pKa's of 10 to 11.
- In general alkyl amines are stronger than ammonia. The more alkyl groups, the stronger the base.

	NH_3	CH_3NH_2	$CH_3CH_2NH_2$
рК _а	0.26	10.64	10.81

• In aqueous phase the basicity of amines is 2>1>3. This is because H of N is stabilized by hydrogen bonding.

 $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N$ pK_a 10.98 10.64 9.81

Nomenclature – Quarternary Salts

When four groups are bonded to nitrogen, the compound is named as a salt of the corresponding amine. Generally, amines form ammonium salts. Ammonium salts are quarternary salts.

 $Me_4N^+Cl^-$: Tetramethyl ammonium chloride

PhNH₃⁺Cl⁻: Phenylammonium chloride

If ammonium salts have four different groups, they can be chiral since N is sp³ hybridized and thus a tetrahedral.

Basicity of Arylamines

Aromatic amines basic in nature but less than aliphatic amines.

 The N lone-pair electrons in arylamines are delocalized by interaction with the aromatic ring pi electron system and are less able to accept H⁺ than are alkylamines

- Substituted arylamines can be more basic or less basic than aniline
- Electron-donating substituents (such as –CH₃, –NH₂, –OCH₃) increase the basicity of the corresponding arylamine
- Electron-withdrawing substituents (such as -Cl, -NO₂, -CN) decrease arylamine basicity
 NH
 NH
 NH
 NH
 NH
 NH
 NH
 NH

Basicity – More Amines

Aliphatic amines are stronger bases than aromatic because they don't have the double bonds to undergo resonance, so the electrons on N are available for reaction.

Cyclohexylamine $pK_a = 10.66$

Aniline $pK_a = 4.63$

Heterocyclic amines have variable strength as bases depending on whether the N has electrons available for donation or not.

Physical Properties of Amines

- Boiling point: Amines have high boiling points due to hydrogen bonding. However, boiling point decreases from primary to tertiary (1°>2°>3°) due to decreasing hydrogen bonding. And boiling point increases with molecular weight of amines.
- 2) <u>Solubility in water</u>: Primary more than secondary than tertiary due to hydrogen bonding, however solubility in water decreases with increasing molecular weight.
- 3) <u>Odor</u>: Amines are foul smelling compounds.
 - Fish smell: trimethyl amine
 - Cadaverine: 1,5-hexanediamine
 - Putrascene: 1,4-butanediamine

Amines in Nature

There are many natural products that contain nitrogen in aliphatic and aromatic form. R

Amino Acids (20)

• Neurotransmitters (more examples on next slide): Acetylcholine (shown below) is the common neurotransmitter in our bodies. But neurotransmitters taken as medicine or recreationally can be medically useful but are usually addictive and in some cases toxic.

Alkaloids - examples

coniine

caffeine

nicotine

Η 2

strychnine

CH₃

Ē H Ν

Morphine

Codeine

Amines - Nomenclature and Properties

0

Amines - Dyes

Amines are important functional group in natural and synthetic dyes.

Key Words/Concepts

- Nomenclature
- Physical properties
- Basicity of amines