Amines 3 - Reactions

Dr. Sapna Gupta

Reaction of Amines - Electrophilic Substitution

Amines can undergo a number of reactions, many of which we have covered:

- Substitution reactions with alkyl halides
- Reaction with carbonyls to form imines and enamines
- Reactions with carboxylic acids to form amides.

Some reactions specific to amines are covered here.

1) <u>Electrophilic reaction of aniline</u>: Aniline is a highly activated benzene ring and can undergo electrophilic substitution like bromination without any catalyst.

$$Br_2$$
 Br_2
 Br_2
 Br_3

Reaction of Amines - Hoffman Elimination

2) <u>Hoffman Elimination</u>: Amines groups can be eliminated to give alkenes on treatment with excess of alkyl halide and silver oxide with heat. NH₂- is a poor leaving group, but when it converts to a quarternary alkylammonium ion, it becomes a good leaving group. Because of its bulkiness, the product is usually the Hoffman product (less stable alkene).

Example:

$$\begin{array}{c|c}
 & \text{NH}_2 \\
\hline
 & \text{Xs CH}_3 I
\end{array} \qquad \begin{array}{c}
 & \text{N(CH}_3)_3 \\
\hline
 & \text{heat}
\end{array}$$

Example:

$$\begin{array}{c|c} & Xs \ CH_3I & \\ \hline & & \\ NH_2 & \\ & & \\$$

Reaction of Amines - Nitrous Acid

Nitrous acid, a weak acid, is prepared by treating sodium nitrite, $NaNO_2$, with H_2SO_4 or HCl at 0-5 °C. It is not a stable acid and has to be generated "in situ" which means created and used immediately.

$$HCl_{(aq)} + NaNO_{2 (aq)} \xrightarrow{0-5 \text{ °C}} HONO_{(aq)} + NaCl_{(aq)}$$

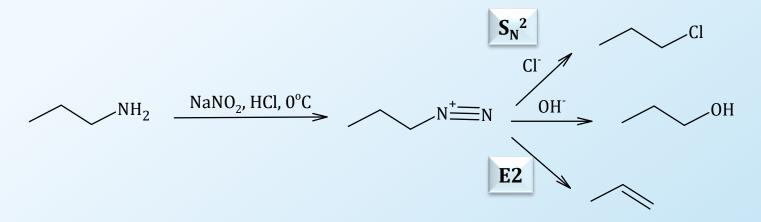
$$H_2SO_{4 (aq)} + 2NaNO_{2 (aq)} \xrightarrow{0-5 \text{ °C}} 2 HONO_{(aq)} + Na_2SO_{4 (aq)}$$

In its reactions with amines, nitrous acid:

- participates in proton-transfer reactions.
- Is a source of the nitrosyl cation, NO+, a weak electrophile.

Reactions of Amines – Nitrous Acid with 3° and 2° Amines

Reaction with 3° amines: These do not react with nitrous acids.


Reaction with 2° Amines: These react with NO+ to give N-nitrosamines.

N – Nitroso amines are studied more for their toxicity.

Reactions of Amines – Nitrous Acid with 1º Aliphatic Amines

Primary amines form diazonium salts on treatment with nitrous acids. These diazonium ions are unstable and lose N_2 to give a carbocation which can then:

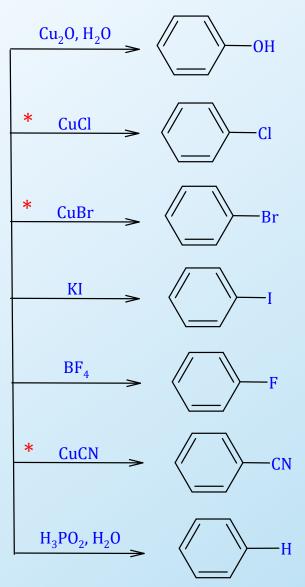
- 1. React with a nucleophile to give a substitution product.
- 2. Lose a proton to give an alkene.

Amines - Reactions

Reactions of Amines – Nitrous Acid with 1º Aromatic Amines

Primary aromatic amines react with HNO₂, yielding stable arenediazonium salts.

$$\begin{array}{c|c}
 & N^{+} = N \\
\hline
 & NaNO_2 \\
\hline
 & HCl, 0^{\circ}C
\end{array}$$


The N_2 then can be substituted by any nucleophile. This is unusual since benzene ring does not undergo S_N 2 reactions.

$$\begin{array}{c|c}
 & NH_2 \\
\hline
 & NaNO_2 \\
\hline
 & HCl, 0°C
\end{array}$$

Reactions of Amines – Nitrous Acid with 1º

Aromatic Amines

* Sandmeyer Reactions: Replacement of the Diazonium Group by -Cl, -Br or -CN.

Reactions of Amines – Nitrous Acid with Aromatic Amines

• Replacement with Iodine

$$\begin{array}{c|c}
NO_2 & NO_2 \\
\hline
NANO_2 & KI \\
\hline
NH_2 & NO_2
\end{array}$$

• Replacement with Fluorine

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline NaNO_2 & HCl, 0°C \\ NH_2 & N_2^+ \end{array}$$

• Replacement with Hydroxide

$$\begin{array}{c|c} C_2H_5 & C_2H_5 \\ \hline & NaNO_2 \\ \hline & HCl, 0^{\circ}C \end{array}$$

Reactions of Amines – Nitrous Acid with Aromatic Amines – Synthetic Applications

3, 5-dibromotoluene cannot be made directly from either toluene or bromobenzene. Bromination of toluene will give o, p – substitution.

$$\begin{array}{c|c} CH_3 & CH_3 & CH_3 \\ \hline Br_2 & FeBr_3 \end{array}$$

However, making p-methylaniline followed by bromination and then removing the amino group can do this reaction successfully.

Reactions of Amines – Nitrous Acid with Aromatic Amines – Diazonium Coupling Reaction

Aromatic diazonium salts react as electrophiles with highly reactive aromatic compounds such as phenol and aromatic tertiary amines. This reaction is called a diazo coupling reaction.

Phenol and aniline derivatives undergo coupling almost exclusively at the para position unless this position is blocked.

$$H_3C$$
 NH_2
 NH_2
 NH_2
 NH_3
 NH_3
 NH_4
 NH_4
 NH_4
 NH_5
 NH_5
 NH_5
 NH_6
 NH_6

Coupling Reaction

The azo coupling results in compounds which are highly conjugated and which often absorb light in the visible region and so are commonly used as dyes.

The - SO₃-Na⁺ group is added to the molecule to add water solubility and to link the dye to the polar fibers of wool, cotton etc.

OH SO₃H

Below is the synthesis of the dye on the right starting from benzene.

$$\frac{1) \text{ HNO}_3, \text{ H}_2\text{SO}_4}{2) \text{ LAH}}$$

Problems

What reagents do you need to carry out the following reactions.

a)
$$C_{2}H_{5}$$
 $C_{2}H_{5}$ $C_{2}H_{5}$

Amines - Reactions

Problems - Answers

What reagents do you need to carry out the following reactions.

a)
$$\frac{C_2H_5}{H_2SO_4}$$
 $\frac{COOH}{H_2SO_4}$ $\frac{COOH}{NO_2}$ $\frac{Sn/HCl}{NO_2}$ $\frac{1) NaNO_2, HCl, O^{\circ}C}{2) Cu_2O, H_2O}$ OH

b)
$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{4}H_{5}$$

$$C_{5}H_{5}$$

$$C_{7}H_{5}$$

$$C_{8}H_{5}$$

$$C_{8}H_{5}$$

$$C_{9}H_{5}$$

$$C_{1}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{4}H_{5}$$

$$C_{5}H_{5}$$

$$C_{7}H_{5}$$

$$C_{8}H_{5}$$

$$C_{8}H_{5}$$

$$C_{8}H_{5}$$

$$C_{9}H_{5}$$

$$C_{1}H_{5}$$

$$C_{1}H_{5}$$

$$C_{1}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{1}H_{5}$$

$$C_{2}H_{5}$$

$$C_{2}H_{5}$$

$$C_{3}H_{5}$$

$$C_{4}H_{5}$$

$$C_{5}H_{5}$$

$$C_{7}H_{5}$$

$$C_{8}H_{7}$$

Amines - Reactions

Key Concepts

- Hoffman Elimination
- Diazonium salts
- Coupling reaction
- Aromatic synthesis