<u>Spectroscopy</u> 1– Electromagnetic Spectrum

Dr. Sapna Gupta

Introduction

Spectroscopic techniques are used to determine structure in organic chemistry. They should destroy little or no sample, if possible.

There are four main spectroscopy we will cover:

- <u>Ultraviolet-Visible (UV-Vis) spectroscopy</u> studies the electron transitions to determine bonding patterns.
- <u>Infrared (IR) spectroscopy</u> measures the bond vibration frequencies in a molecule and is used to determine the functional group.
- <u>Mass spectrometry (MS)</u> fragments the molecule and measures the masses and their relative abundance to determine the mass of the whole molecule and fragments.
- <u>Nuclear magnetic resonance (NMR)</u> spectroscopy detects signals from hydrogen and carbon atoms in presence of a magnetic field and can be used to determine the structure in great accuracy.

Wave Nature

All waves travel in a particular cycle of certain length which determines properties of that wave. The properties that determine the quality of the wave are:

- Wavelength: λ (*lambda*) distance between identical points on successive wave/peaks.
- **Frequency**:v (*nu*) number of waves that pass a particular point in one second.
- **Amplitude**: the vertical distance from the midline of waves to the top of the peak.

Wave properties are mathematically related as:

 $c = \lambda v$

Where,

- *c* = 2.99792458 x 10⁸ m/s (speed of light)
 - λ = wavelength (in meters, m)

v = frequency (reciprocal seconds, s⁻¹)

Electromagnetic Spectrum

Electromagnetic spectrum consists of various radiations divided by wavelength or frequency: X rays, microwaves, radio waves, visible light, IR, and UV.

- Frequency and wavelength are inversely proportional.
- $c = \lambda v$, where *c* is the speed of light.
- Frequency and energy are directly proportional.
- Energy per photon = hv, where h is Planck's constant, 6.62 x 10⁻³⁷ kJ•sec.

The Spectroscopy Regions

We will be studying the following aspects of the electromagnetic spectrum:

<u>UV- Vis Spectroscopy</u>

• Wavelength is measured in nm – 200-800 nm.

IR Spectroscopy

- Wavelengths usually $2.5-25 \ \mu m$.
- More common units are wavenumbers, or cm⁻¹, the reciprocal of the wavelength in centimeters. 4000 400 cm⁻¹.

Nuclear Magnetic Resonance

- Uses radio frequency 60 1000 MHz.
- The common scale is ppm (parts per million).

Key Concepts

- Know the basics of electromagnetic spectrum.
- Relationship between wavelength and frequency and energy.