<u>Infra-Red Spectroscopy</u> 3 – Spectra Analysis

Dr. Sapna Gupta

Hydrocarbons

Hydrocarbons have the C-C stretches as well has C-H stretches.

C-H stretches occur around 3300 cm⁻¹. The C-C bonds appear in the fingerprint region. We will look at three hydrocarbons.

<u>Alkanes</u>	C-H	3000 cm ⁻¹	This is the most common backbone of all organic compounds. The C-H signals will always appear in all compounds that have sp ³ hybridized carbons
<u>Alkenes</u>	=C-H C=C	3100-3000 cm ⁻¹ ~1660 cm ⁻¹	Alkenes will have two characteristic signals: one is =C-H stretch and the other is C=C. The =C-H signal depends on the location of double bond and depends on the number of alkyl groups around it. The C=C signal is absent in case the alkene is symmetrical.
<u>Alkynes</u>	$\equiv C-H$ $C \equiv C$	~3300 cm ⁻¹ ~2100 cm ⁻¹	Alkynes will have two characteristic signals: one is \equiv C-H stretch and the other is C \equiv C. The \equiv C-H signal will appear only in terminal bonds. The C \equiv C signal is absent in case the alkyne is symmetrical.

O-H and N-H Stretching

Both O-H and N-H signals appear around 3300 cm⁻¹, but they look different.

<u>Alcohols</u>	0-Н	~3500 cm ⁻¹	The O-H signal shows up prominently in the IR. It is an intense broad signal due to H-bonding.
<u>Amines</u>	N-H	3300-3500 cm ⁻¹	Amines are similar to OH in the region they appear. They are not as broad in appearance. The number of signals seen depend on how many Hs are on the N. 2H (1° amine) show 2 peaks, 1H (2° amine) has one peak and no H (3° amine) has no peaks.

https://www.orgchemboulder.com/Spectroscopy/irtutor/aminesir.shtml

Carbonyl Stretching

There are a variety of carbonyl, C=O, bonds in organic chemistry: aldehyde, ketone, carboxylic acid, carboxylic ester and amides. On careful examination of the location of peaks one can determine which functional group the C=O bond belongs to.

Carbonyls give a strong IR signal around 1710-1720 cm⁻¹, so it is easy to recognize.

<u>Ketones</u>	C=O	~1730 cm ⁻¹	Only the C=O bond will show for ketones	
<u>Aldehydes</u>	С=О О=С-Н	$\sim 1730 \text{ cm}^{-1}$ 2700 and 2800 cm ⁻¹	In addition to C=O they will have two additional C-H signals from the O=C-H	
<u>Carboxylic</u> <u>Acid</u>	С=0 -ОН	~1700 cm ⁻¹ 3300 cm ⁻¹	In addition to C=O they will also have O-H signal.	
<u>Carboxylic</u> <u>Esters</u>	C=0	1730-1740 cm ⁻¹	These are the hardest to identify as their signal might look like ketone. The C=O of an ester absorbs at little bit higher frequency. Usually, additional spectroscopy or qualitative information is helpful in deciding for esters.	
<u>Amides</u>	С=0 N-Н	~1640 cm ⁻¹ 3300 cm ⁻¹	These will show a C=O signal towards the higher energy region. And depending on the number of alkyl groups on N, there might be signals in the N-H region	

O-H Stretch of a Carboxylic Acid

This O-H absorbs broadly, 2500-3500 cm⁻¹, due to strong hydrogen bonding.

N-H Stretch of an Amide

Carbon - Nitrogen Stretching

- C N absorbs around 1200 cm⁻¹, which is the fingerprint region.
- C = N absorbs around 1660 cm⁻¹ and is much stronger than the C = C absorption in the same region.
- $C \equiv N$ absorbs strongly just *above* 2200 cm⁻¹. The alkyne $C \equiv C$ signal is much weaker and is just *below* 2200 cm⁻¹.

Summary of IR Absorptions

3500 25	00 18	800	1600	400
Bonds to Hydrogen	Triple bonds	Double bonds	Single bon	ds
N - H O - H C - H	$\begin{array}{l} C \equiv C \\ C \equiv N \end{array}$	C = C $C = O$ $C = N$	C - C - C - C -	C O N X

Fingerprint region

IR Chart

Organic Group	Specific Group	Range (cm ⁻¹)	Signal Intensity
Alkane			
	C-H	2852-2960	Strong
Alkene			
	=С-Н	3010-3095	Medium
	C=C	1620-1680	Varies
	Cis RCH=CHR	675-730	Strong
	Trans RCH=CHR	960-975	Strong
Alkyne			
	≡C-H	3300	Strong
	C≡C	2100-2260	Sharp
Aromatic			
	Ar-H	~3030	
Substitution	Monosubstituted	690-710	Strong
	o-disubstituted	730-770	Strong
	m-disubstituted	735-775	Strong
		and 770-810	
	p-disubstituted	780-860	Strong
Alcohols			
	0-Н	3590-3650	Strong
	Carboxylic acids O-	2500-3000	Strong and broad
Carbonyle	11		
Conoral	C - 0	1630-1780	Strong
*Aldohydos	CHO	1690-1740	Strong
Kotonos	C-0	1680-1750	Strong
Carbovylic esters	COOR	1735-1750	Strong
*Carboxylic acids	СООН	1710-1780	Strong
*Amides	CONH	1630-1690	50 01g
Amines	001112	1050 1070	
	N-H	3300-2500	Medium
		0000 2000	(1º two neaks 2º one
			neak and 30 no neak)
Nitriles			peak and 5 no peak)
	C=N	2220-2260	Medium and sharp
	IR Spectroscopy Function	onal Groups	incutum and sharp

* More than one signal

Strengths and Limitations of IR

- IR alone cannot determine a structure.
- Some signals may be ambiguous.
- The *presence* of a functional group is generally a confirmation.
- The *absence* of a signal also may not be a definite proof that the functional group is absent, e.g., a symmetrical alkyne or alkene.
- Comparing with a known sample's IR spectrum confirms the identity of the compound.

Worked Example: Write the approximate absorption in IR for each of the compounds given below.

Worked Example: What changeds in IR will you see in the following reaction?

Worked Example: What functional groups might be present in the following IR spectra?

21

Key Concepts

• IR frequencies and relationship to functional group.