<u>Nuclear Magnetic Resonance</u> 3 - Carbon – 13 NMR

Dr. Sapna Gupta

Introduction and Theory of Carbon-13 NMR

- ¹²C has no magnetic spin since the nuclear particles are all paired hence it is diamagnetic.
- ¹³C has a magnetic spin, but there is only 1% of the carbon in a sample so signals are weak, sometimes getting lost in noise. During spectroscopy hundreds of spectra are taken, averaged.
- There is no coupling as the chances of C-13 next to another will be very low. Usually, decoupling is done to avoid this if it happens. <u>All signals are singlets</u>.
- The chemical shift scale is from 0-230 ppm, very high energy.
- The intensity can still give an idea of how many carbons are under the peak.
- The number of peaks indicate the number of carbons. Note that if the carbons are equivalent, they will appear as one signal.
- Techniques such as DEPT (Distortionless Enhancement by Polarization Transfer) allows to see how many carbons are attached on each carbon, classifying the carbons as, 1°, 2°, 3° and 4°.
- C-13 can be corelated with H-NMR to give HETCOR hetero correlation to help assign each carbon to proton peaks.

C-13 NMR First Look

Number of Signals

Hydrogen and Carbon Chemical Shifts

Chemical Shift

C-NMR Spectroscopy

DEPT for C-13 NMR

- Example: 1-chloro-2-propanol
- (a) The broadband decoupled spectrum and
- (b) a set of DEPT spectra showing the separate CH, CH₂, and CH₃ signals

Combined ¹³C and ¹H Spectra

H and C coupled NMR (HETCOR)

Spin-Spin Splitting

- It is unlikely that a ¹³C would be adjacent to another ¹³C, so splitting by carbon is negligible.
- ¹³C <u>will</u> magnetically couple with attached protons and adjacent protons.
- These complex splitting patterns are difficult to interpret.

Interpreting ¹³C NMR

- The number of different signals indicates the number of different kinds of carbon.
- The location (chemical shift) indicates the type of functional group.
- The peak area indicates the numbers of carbons (if integrated).
- The splitting pattern of off-resonance decoupled spectrum indicates the number of protons attached to the carbon.

Problems

Problem

Key Concepts

- Chemical shifts
- Interpret a C-13 NMR
- Predict signals for C-13 NMR for a compound