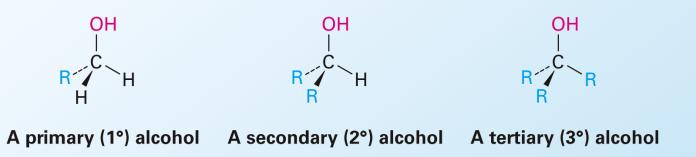
Alcohols Nomenclature, Properties and Applications


Dr. Sapna Gupta

Nomenclature

- IUPAC names
 - The OH group gets priority over alkenes, alkynes, alkyl groups and halides.
 - Find the parent chain to give the OH group the lowest possible number.
 - Change the suffix -e to -ol. (e.g. methane to methanol)
- Common names: first two are methanol (methyl alcohol) and ethanol (ethyl alcohol)
 - Name the alkyl group bonded to oxygen followed by the word alcohol.

Nomenclature, contd...

- General classifications of alcohols based on substitution on C to which OH is attached
- Methyl (C has 3 H's), Primary (1°) (C has two H's, one R), secondary (2°) (C has one H, two R's), tertiary (3°) (C has no H, 3 R's)

Nomenclature - contd...

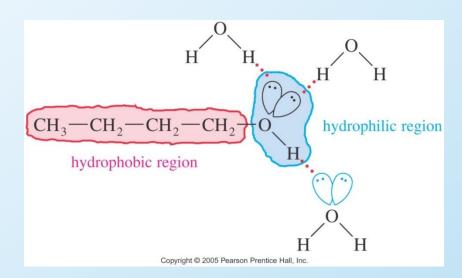
- For benzene with alcohol group, use "phenol" as the parent hydrocarbon name, not benzene
- Name substituents on aromatic ring by their position from OH
- Compounds with more than one OH group are named diols, triols, etc.
- Unsaturated alcohols

Ethylene glycol

(1,2-ethanediol)

- Show the double bond by changing the infix from -an- to -en-.
- Number the chain to give OH the lower number

Glycerol


(1,2,3-propanetriol)

Physical Properties

- Unusually high boiling points due to hydrogen bonding between molecules.
- Small alcohols are miscible in water, but solubility decreases as the size of the alkyl group increases.
- Odor most alcohols have a sweet smell.

TABLE 1	0-3	Solub	ility of
Alcohols	in Wa	ater (a	t 25°C)

Alcohol Solubility in Water		
mothyl missible		•
ethyl miscible n-propyl miscible t-butyl miscible isobutyl 10.0% n-butyl 9.1% n-pentyl 2.7% cyclohexyl 3.6% n-hexyl 0.6% phenol 9.3% hexane-1,6-diol miscible	propyl miscible miscible butyl 10.0% butyl 9.1% pentyl 2.7% clohexyl 3.6% hexyl 9.3%	le le le

Solubility decreases as the size of the alkyl group increases.

Copyright © 2005 Pearson Prentice Hall, Inc.

Physical Properties - contd.

- Ethanol and dimethyl ether are constitutional isomers.
- Their boiling points are dramatically different
 - Ethanol forms intermolecular hydrogen bonds resulting in a higher boiling point whereas ether has only dipole-dipole interactions.

CH ₃ CH ₂ OH	CH ₃ OCH ₃
Ethanol	Dimethyl ether
bp 78° C	bp -24 °C

- In relation to alkanes of comparable size and molecular weight, alcohols
 - have higher boiling points.
 - are more soluble in water.
- The presence of additional -OH groups in a molecule further increases solubility in water and boiling point.

Acidity of Alcohols

- p*K*_a range: 15.5-18.0 (water: 15.7)
- Acidity decreases as alkyl group increases.
- Halogens increase the acidity.
- Phenol is 100 million times more acidic than cyclohexanol!

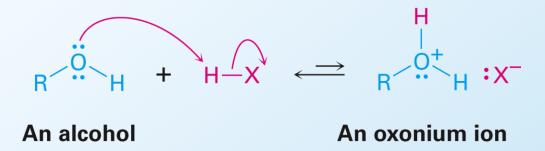
TABLE 10-4 Acid-Dissociation Constants of Representative Alcohols					
Alcohol	Structure	K a	р <i>К</i> а		
methanol	CH ₃ —OH	3.2×10^{-16}	15.5		
ethanol	CH_3CH_2 —OH	1.3×10^{-16}	15.9		
2-chloroethanol	$Cl-CH_2CH_2-OH$	5.0×10^{-15}	14.3		
2,2,2-trichloroethanol	Cl_3C-CH_2-OH	6.3×10^{-13}	12.2		
isopropyl alcohol	$(CH_3)_2CH$ — OH	3.2×10^{-17}	16.5		
t-butyl alcohol	$(CH_3)_3C$ —OH	1.0×10^{-18}	18.0		
cyclohexanol	C_6H_{11} — OH	1.0×10^{-18}	18.0		
phenol	C_6H_5 —OH	1.0×10^{-10}	10.0		
Comparison with Other Acids					
water	H_2O	1.8×10^{-16}	15.7		
acetic acid	CH₃COOH	1.6×10^{-5}	4.8		
hydrochloric acid	HCl	$1.6 \times 10^{+2}$	-2.2		
Copyright © 2005 Pearson Prentice Hall, Inc.					

Formation of Alkoxide Ions

ROH + Na (or NaH) yields sodium alkoxide

React methanol and ethanol with sodium metal (redox reaction).

$$CH_3OH + Na \longrightarrow CH_3O-Na+$$


React less acidic alcohols with more reactive potassium. Some other bases (other than alkali metals), can be NaH, NaNH₂.

RO⁻ + 1° alkyl halide yields ether (Williamson ether synthesis) (*next chapter*)

$$CH_3CH_2CHCH_3 + CH_3CH_2-Br \longrightarrow CH_2CH_2CH-O-CH_2CH_3$$

Basicity of Alcohols

- Weakly basic
- Alcohols are weak Brønsted bases
- Protonated by strong acids to yield oxonium ions, ROH₂+

Methanol

- Also called "Wood alcohol"
- Common industrial solvent
- Fuel at Indianapolis 500
- Toxic: consumption leads to blindness.

Ethanol

- Formed by fermentation of sugar and starches in grains
- Distillation produces "hard" liquors
- Azeotrope: 95% ethanol, constant boiling
- Denatured alcohol used as solvent
- Gasahol: 10% ethanol in gasoline

Other Alcohols of Interest

- Isopropyl alcohol disinfectant
- Ethylene Glycol antifreeze
- Glycerol used as medication
- Sugar all carbohydrates have alcohol groups.

Key Concepts

- Nomenclature
- Primary, secondary and tertiary alcohols
- Physical properties
- Acidity of alcohols
- Alkoxides