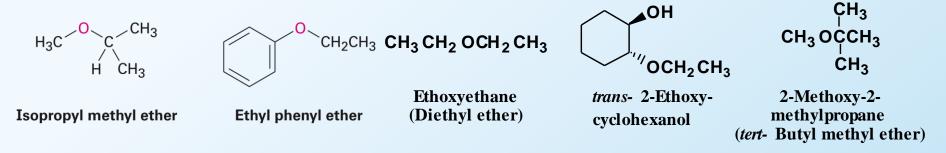

Ethers Nomenclature, Properties, Synthesis and Reactions

Dr. Sapna Gupta

Ether Functional Group

- An ether has two organic groups (alkyl, aryl, or vinyl) bonded to the same oxygen atom, R–O–R'
- Thiols (R–S–H) and sulfides (R–S–R') are sulfur (for oxygen) analogues of alcohols and ethers

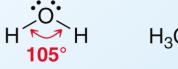


Diethyl ether

Anisole (methyl phenyl ether) Tetrahydrofuran

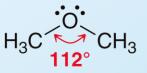
Nomenclature: Ethers

- IUPAC: the longest carbon chain is the parent.
 - Name the OR group as an alkoxy substituent.
- Common names: name the groups bonded on either side of oxygen in alphabetical order followed by the word ether.



- Although cyclic ethers have IUPAC names, their common names are more widely used.
- IUPAC: prefix ox- shows oxygen in the ring. The suffixes -irane, -etane, -olane, and ane show three, four, five, and six atoms in a saturated ring.



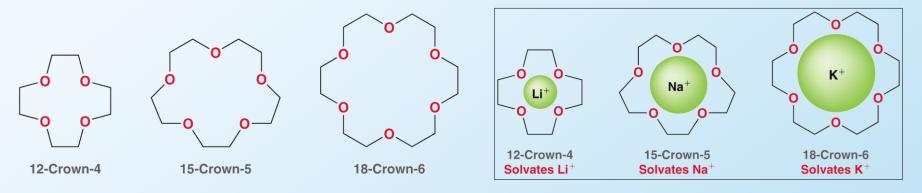

Physical Properties of Ethers

- Low boiling points due to lack of H-Bonding
- Low solubility in water.
- Have a sweet odor.

Water

Dimethyl ether

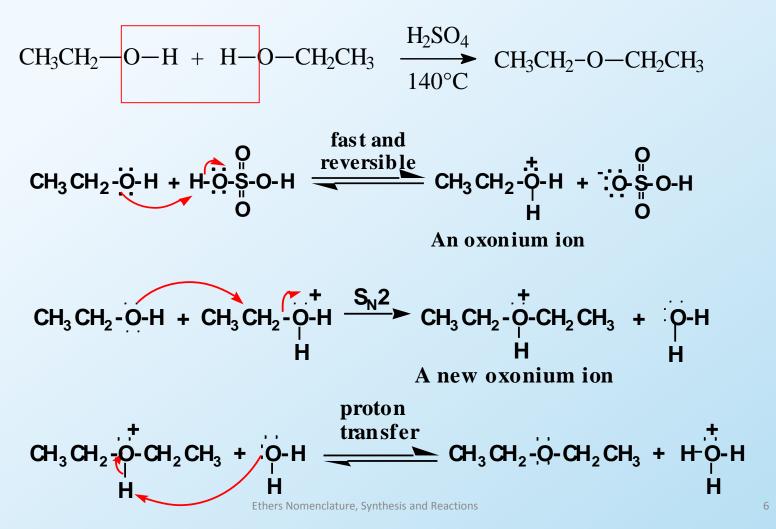
Boiling Points


TABLE 14-1 Comparison of the Boiling Points of Ethers, Alkanes,and Alcohols of Similar Molecular Weights

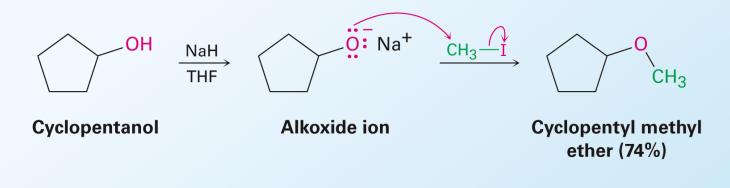
Compound	Formula	MW	bp (°C)	Dipole Moment (D)
water	H ₂ O	18	100	1.9
ethanol	CH ₃ CH ₂ —OH	46	78	1.7
dimethyl ether	$CH_3 - O - CH_3$	46	$-25 \\ -42 \\ 118$	1.3
propane	$CH_3CH_2CH_3$	44		0.1
<i>n</i> -butanol	$CH_3CH_2CH_2CH_2 - OH$	74		1.7
tetrahydrofuran		72	66	1.6
diethyl ether pentane	$CH_3CH_2 - O - CH_2CH_3$	74	35	1.2
	$CH_3CH_2CH_2CH_2CH_3$	72	36	0.1

Note: The alcohols are hydrogen bonded, giving them much higher boiling points. The ethers have boiling points that are closer to those of alkanes with similar molecular weights.

Applications of Ethers


- <u>Solvent</u>: this is by far the most common use of ethers. They are more non polar than alcohols and can dissolve more non polar compounds. Tetrahydrofuran is a very common lab solvent – it has a higher boiling point so reactions can be carried out at higher temperatures.
- <u>Crown Ethers</u>: used to trap metals (chelating agents). Can also be used as phase transfer catalyst.

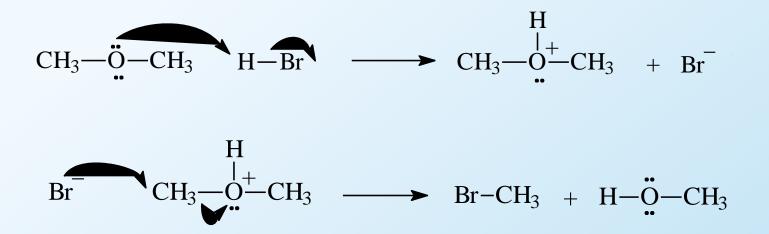
• <u>Anesthetic Agents</u>: used first as an anesthetic agent in the 1840s. It is still used presently, but it does cause side effects.


Ether Synthesis

1) <u>Bimolecular Dehydration</u>: Industrial method, not good lab synthesis. If temperature is too high, alkene forms.

Ether Synthesis, contd....

2) <u>Williamson Synthesis</u>: this synthesis is more efficient in making unsymmetric ethers. An alkoxide ion is added to a 1° alkyl bromide (or tosylate) and reaction occurs via $S_N 2$ mechanism.


3) <u>Alkoxymercuration-Demercuration</u>

 $CH_{3}(CH_{2})_{3} - CH = CH_{2} \xrightarrow{(1) Hg(OAc)_{2}, CH_{3}OH} CH_{3}(CH_{2})_{3} - CH - CH_{3}$ I-hexene 2-methoxyhexane, 80%

(Markovnikov product)

Cleavage of Ethers

- Ethers are unreactive toward base, but protonated ethers can undergo substitution reactions with strong acids.
- Alcohol leaving group is replaced by a halide.
- Reactivity: HI > HBr >> HCl

Key Concepts

- Ethers Nomenclature
- Physical properties
- Williamson synthesis
- Reactions (Cleavage)