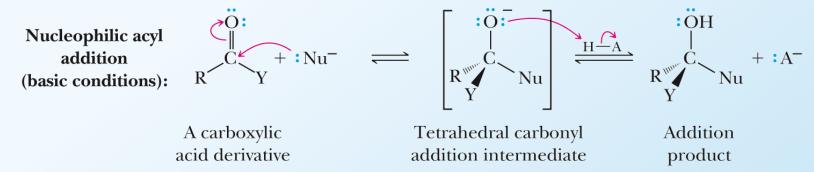
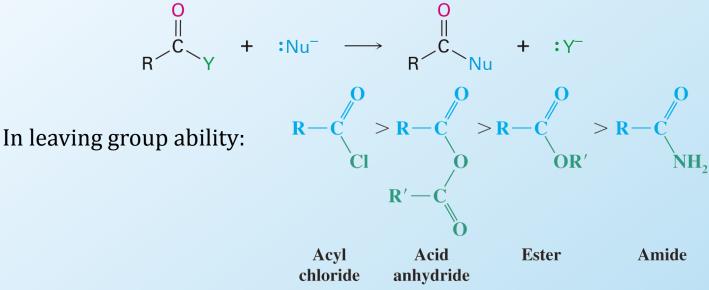

Carboxylic Acid Derivatives Synthesis and Reactions

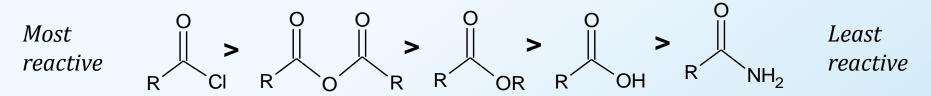
Dr. Sapna Gupta

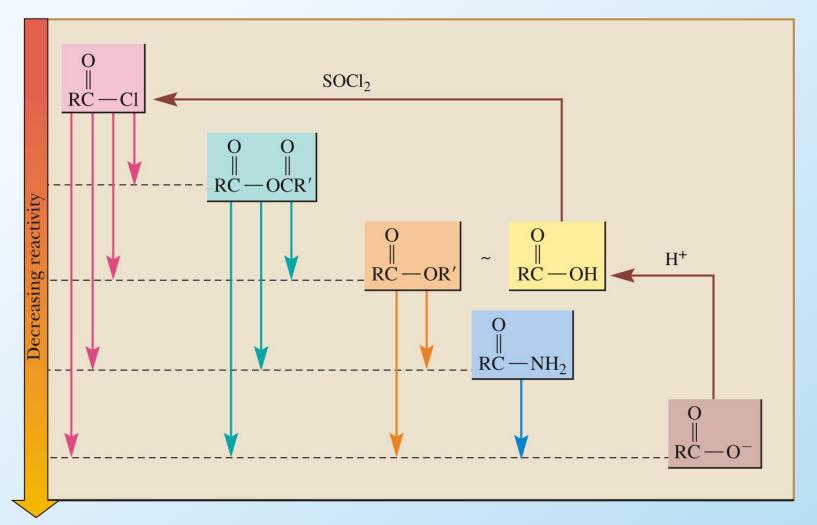

Reactivity of the Derivatives

Here are all derivatives and their relationship to carboxylic acid.



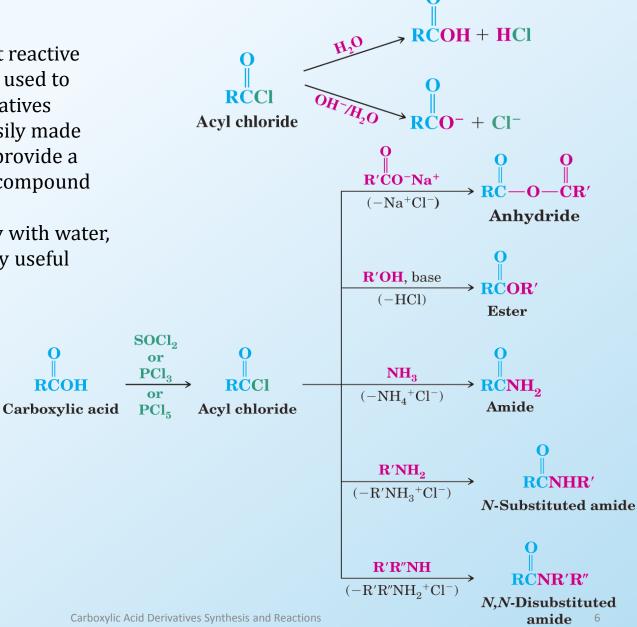
Reactivity of the Derivatives


- Two kinds of reactions occur in acids:
 - Nucleophilic addition



• Nucleophilic substitution

Interconversions of Acid Derivatives



Acyl Chlorides- Synthesis

RCOH +
$$\frac{\text{SOCl}_2}{\text{Thionyl chloride}}$$
 \longrightarrow R—C—CI + $\frac{\text{SO}_2}{\text{Thionyl chloride}}$ + $\frac{\text{PCl}_3}{\text{Phosphorus}}$ \longrightarrow 3 RCCI + $\frac{\text{H}_3\text{PO}_3}{\text{Phosphorus}}$ \longrightarrow RCCI + $\frac{\text{PCl}_3}{\text{Phosphorus}}$ \longrightarrow RCCI + $\frac{\text{PCl}_3}{\text{Phosphorus}}$ \longrightarrow RCCI + $\frac{\text{PCl}_3}{\text{Phosphorus}}$ \longrightarrow RCCI + $\frac{\text{POCl}_3}{\text{Phosphorus}}$ + $\frac{\text{PCl}_5}{\text{Phosphorus}}$ \longrightarrow RCCI + $\frac{\text{POCl}_3}{\text{Phosphorus}}$ + $\frac{\text{PCl}_5}{\text{Phosphorus}}$ \longrightarrow RCCI + $\frac{\text{POCl}_3}{\text{Phosphorus}}$ \longrightarrow RCCI + $\frac{$

Acyl Chlorides - Reactions

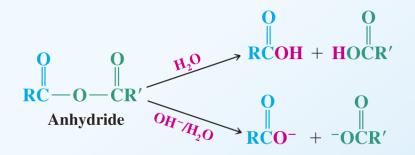
- •Acyl chlorides are the most reactive acyl compounds and can be used to make any of the other derivatives
- •Since acyl chlorides are easily made from carboxylic acids they provide a way to synthesize any acyl compound from a carboxylic acid
- •Acyl chlorides react readily with water, but this is not a synthetically useful reaction

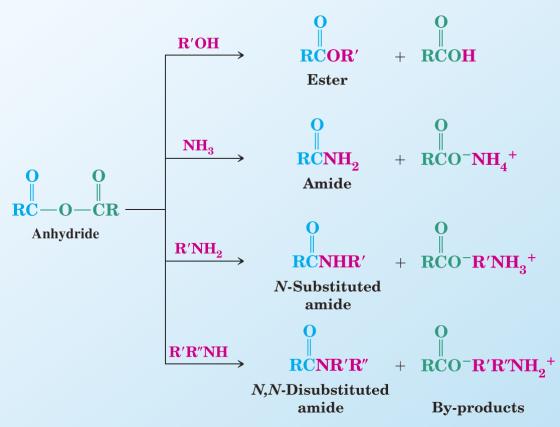
Anhydrides - Synthesis

1) **Acid chlorides** + **carboxylic acids** to form mixed or symmetrical anhydrides. It is necessary to use a base such as pyridine

$$\begin{array}{c} O \\ \downarrow \\ R \end{array} + \begin{array}{c} O \\ \downarrow \\ C \end{array} + \begin{array}{c} O \\ \downarrow \\ N \end{array} + \begin{array}{c} O \\ \downarrow \\ R \end{array} + \begin{array}{c} O \\ \downarrow \\ N^+ \end{array} + \begin{array}{c} C \\ \downarrow \\ N^+ \end{array}$$

2) **Sodium carboxylates + acid chlorides** to form anhydrides.


$$\begin{array}{c}
O & O & O & O \\
\parallel & \parallel & \parallel & \parallel \\
C & O^{-N}a^{+} & R'
\end{array}$$


$$\begin{array}{c}
C & C & C & R' \\
R' & C & C & R'
\end{array}$$

$$\begin{array}{c}
C & C & R'
\end{array}$$

3) **Cyclic anhydrides** with 5- and 6-membered rings can be synthesized by heating the appropriate diacid

Anhydrides - Reactions

Esters - Synthesis

- •Acid catalyzed reaction of alcohols and carboxylic acids to form esters is called Fischer esterification
- •Fischer esterification is an equilibrium process
- •Ester formation is favored by use of a large excess of either the alcohol or carboxylic acid and by removal of water.

From Acids

$$\begin{array}{c} \mathbf{O} \\ \mathbb{R} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{H} \end{array} + \mathbf{R'} - \mathbf{O} \\ \mathbf{H} \\ \stackrel{\mathsf{HA}}{\longleftarrow} \\ \mathbf{R} \\ \mathbf{C} \\ \mathbf{OR'} \end{array} + \mathbf{H}_2 \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{O} \\ \mathbf{R'} \end{array}$$

Mechanism of Esterification

$$C_6H_5C$$
 OH + CH_3 HA C_6H_5C OCH_3 + H_2O

The carboxylic acid accepts a proton from the strong acid catalyst.

The alcohol attacks the protonated carbonyl group to give a tetrahedral intermediate.

A proton is lost at one oxygen atom and gained at another.

Loss of a molecule of water gives a protonated ester.

Transfer of a proton to a base leads to the ester.

Esters - Synthesis

From Acyl Chlorides

$$\begin{array}{c} C_6H_5C-Cl \\ Benzoyl \ chloride \end{array} + \begin{array}{c} CH_3CH_2OH \\ \vdots \\ CH_3CH_2OH \\ \vdots \end{array} + \begin{array}{c} C_6H_5COCH_2CH_3 \\ \vdots \\ (80\%) \end{array} + \begin{array}{c} Cl^{-1} \\ \vdots \\ H \end{array}$$

From Acid Anhydrides

$$\begin{array}{c} CH_{3}C-)_{2}O+C_{6}H_{5}CH_{2}OH \longrightarrow CH_{3}COCH_{2}C_{6}H_{5}+CH_{3}CO_{2}H \\ Acetic & Benzyl & Benzyl acetate \\ anhydride & alcohol & \\ \hline \\ O + CH_{3}CHCH_{2}CH_{3} & \\ \hline \\ OH & \\ \\ OH & \\ \hline \\ OH & \\ \hline$$

Lactones

Synthesis

$$R - CH - CH_{2} - CH_{2} - CH_{2} - CC - OH \longrightarrow R$$

$$\vdots O : H \longrightarrow R$$

$$\vdots O : H \longrightarrow R$$

A δ -hydroxy acid

Hydrolysis

OH OH-/H₂O

HA, slight excess

$$C_6H_5$$
 C_6H_5
 C_6H_5

OH O

 C_6H_5

OP OH

 C_6H_5

OH O

 C_6H_5

CHCH₂CH₂COH

Esters - Reactions

Hydrolysis: Acids can be acid hydrolyzed to give acid and alcohol.

<u>Transesterifcation</u>: One ester can be converted to another in presence of an alcohol and a catalyst.

Write the mechanism on your own! (start with protonating the carbonyl of the ester; the OCH_3 will be the leaving group.)

Saponification: Treatment of ester with strong base. Used mostly to prepare soaps.

<u>Amides - Synthesis</u>

(Note: do mechanism for lactams on your own)

From Acyl Chlorides

Reactant

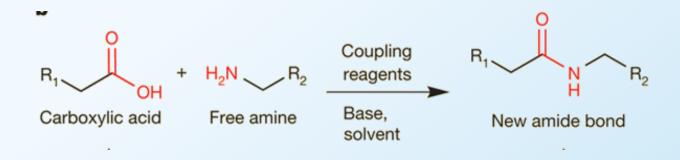
Ammonia; R', R'' = H

 1° Amine; R' = H, R'' = alkyl, aryl

 2° Amine; R', R'' = alkyl, aryl

Product

Unsubstituted amide; R', R'' = H


N-Substituted amide; R' = H, R'' = alkyl, aryl

N,N-Disubstituted amide; R',R'' = alkyl, aryl

From Anhydrides

Amides - Synthesis

From Carboxylic Acid

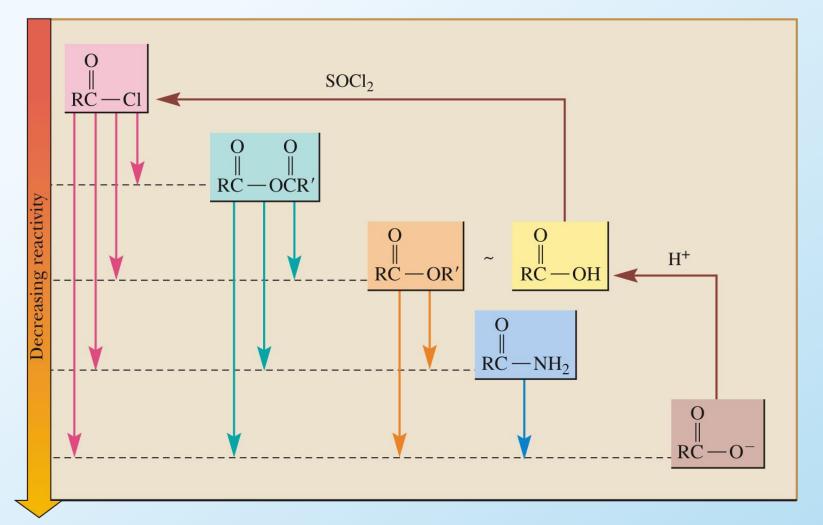
Amides - Reactions

Hydrolysis

$$\begin{array}{c}
O \\
\parallel \\
C \\
\ddot{N}H_{2}
\end{array}
+ H_{3}O^{+} \xrightarrow{H_{2}O} \begin{array}{c}
O \\
\parallel \\
R
\end{array}
+ NH_{2}O \\
OH$$

The amide carbonyl accepts a proton from the aqueous acid.

A water molecule attacks the protonated carbonyl to give a tetrahedral intermediate.


A proton is lost at one oxygen and gained at the nitrogen.

Loss of a molecule of ammonia gives a protonated carboxylic acid.

Transfer of a proton to ammonia leads to the carboxylic acid and an ammonium ion.

Interconversions of Acid Derivatives

Nitriles - Synthesis

• **From Alkyl Halides** (SN2 reaction)

From Aldehydes and Ketones

$$C = O + -:C = N:$$

$$C = N:$$

From dehydration of amides

Reactions - Nitriles (as Acid Derivative)

• Hydrolysis gives carboxylic acid

$$R-C \equiv N \xrightarrow{H_3O^+} R \xrightarrow{O} NH_2 \xrightarrow{H_3O^+} R \xrightarrow{O} OH + NH_4$$

Other Reactions of Carboxylic Acid Derivatives

- With Grignard Reagent

• With acyl chlorides – gives tertiary alcohols

• With esters – gives tertiary alcohols (write mechanism)

Other Reactions of Carboxylic Acid Derivatives - With Grignard Reaction (Ester - Mechanism)

$$H_{3}C - C - \ddot{O} - CH_{3} + R - MgX \longrightarrow H_{3}C - C - \ddot{O} - CH_{3} \longrightarrow H_{3}C - C - R$$

$$+ H_{3}C - \ddot{O} = [MgX]^{+}$$

$$+ H_{3}C$$

Other Reactions of Carboxylic Acid Derivatives - with Copper Reagents

• **Acyl chlorides** – give ketones

Other Reactions of Carboxylic Acid Derivatives

- Reduction

Of Acyl chlorides

Give 1º alcohols

$$\begin{array}{c|c}
C \\
C \\
\hline
C \\
OH$$

Benzoyl chloride

Benzyl alcohol (96%)

Of Amides

Give amines

$$\begin{array}{c|c} O \\ \parallel \\ C \\ N \\ H \end{array} \begin{array}{c} \text{1. LiAlH}_4 \text{ in ether} \\ \hline 2. H_2O \\ \end{array} \begin{array}{c} \text{CH}_3(\text{CH}_2)_9\text{CH}_2 \\ \end{array} \begin{array}{c} \text{CH$$

N-Methyldodecanamide

Dodecylmethylamine (95%)

Of Nitriles

Give amines

Other Reactions of Carboxylic Acid Derivatives - Reduction

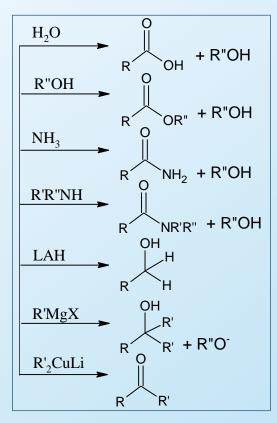
Of Esters

With strong reducing agent

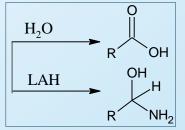
Give 1º alcohols

Mechanism

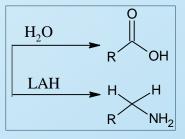
Using a weak reducing agent Give aldehydes


Aldehyde

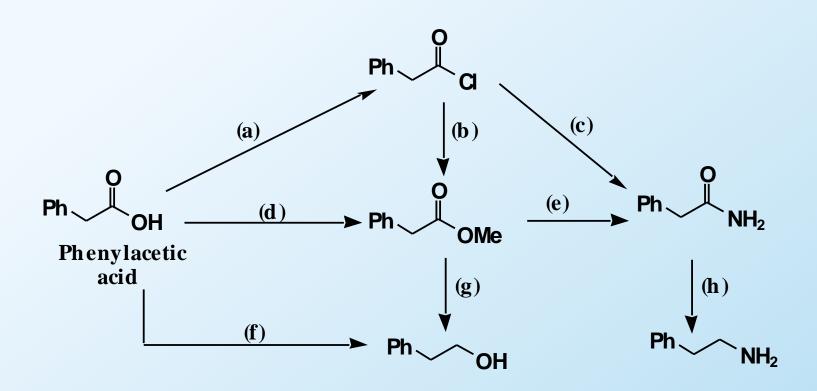
A primary


alcohol

All Reactions



$$R \longrightarrow NH_2$$



R⊞CN

Interconversions - Practice

Problem: Show reagents and experimental conditions to bring about each reaction.

Key Concepts

- Synthesis and Reactions of all derivatives
- Mechanism of esterification