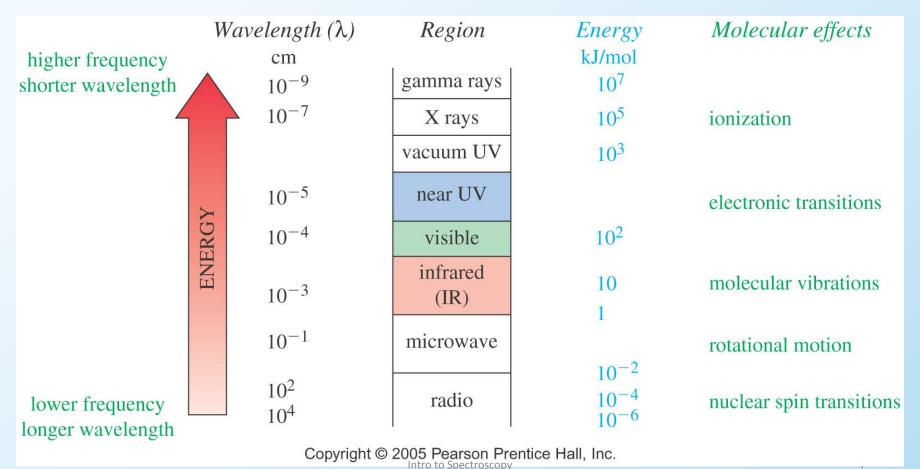
Introduction to Spectroscopy and Introduction to Infra-Red Spectroscopy

Dr. Sapna Gupta

Introduction

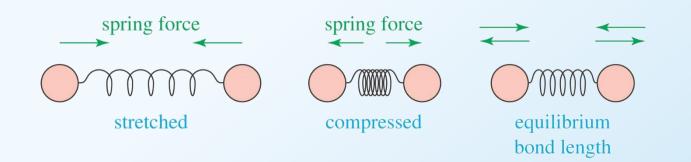

- Spectroscopy is an analytical technique which helps determine structure.
- It destroys little or no sample.
- The amount of light absorbed by the sample is measured as wavelength is varied.

Types of Spectroscopy

- Ultraviolet (UV) spectroscopy uses electron transitions to determine bonding patterns.
- Infrared (IR) spectroscopy measures the bond vibration frequencies in a molecule and is used to determine the functional group.
- Mass spectrometry (MS) fragments the molecule and measures the masses.
- Nuclear magnetic resonance (NMR) spectroscopy detects signals from hydrogen atoms and can be used to distinguish isomers.

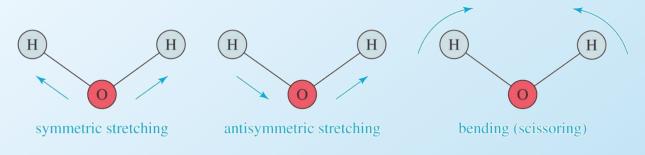
Electromagnetic Spectrum

- Examples: X rays, microwaves, radio waves, visible light, IR, and UV.
- Frequency and wavelength are inversely proportional.
- $c = \lambda v$, where *c* is the speed of light.
- Energy per photon = hv, where h is Planck's constant, 6.62 x 10⁻³⁷ kJ•sec.

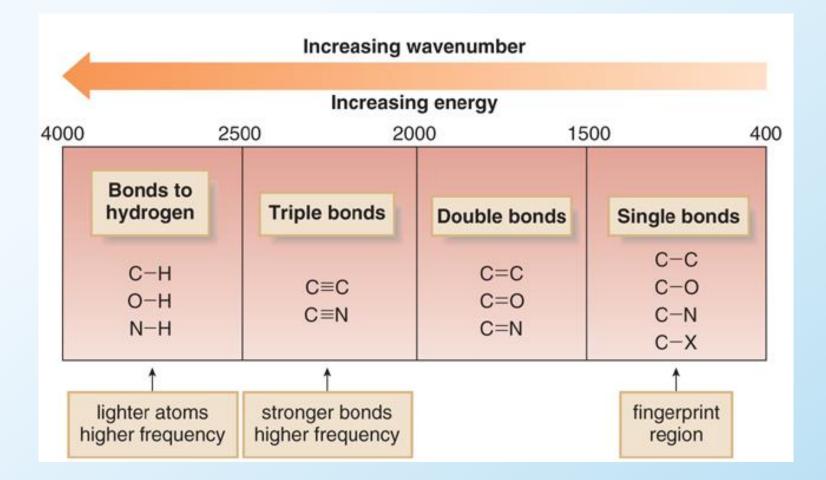


The IR Region

- Just below red in the visible region.
- Wavelengths usually 2.5-25 μ m.
- More common units are wavenumbers, or cm⁻¹, the reciprocal of the wavelength in centimeters.
- Wavenumbers are proportional to frequency and energy.


Molecular Vibrations

Covalent bonds vibrate at only certain allowable frequencies.


Vibrational Modes

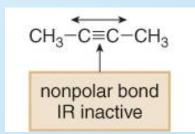
Nonlinear molecule with n atoms usually has 3n - 6 fundamental vibrational modes.

IR Absorptions

Bonds absorb in four predictable regions of an IR spectrum.

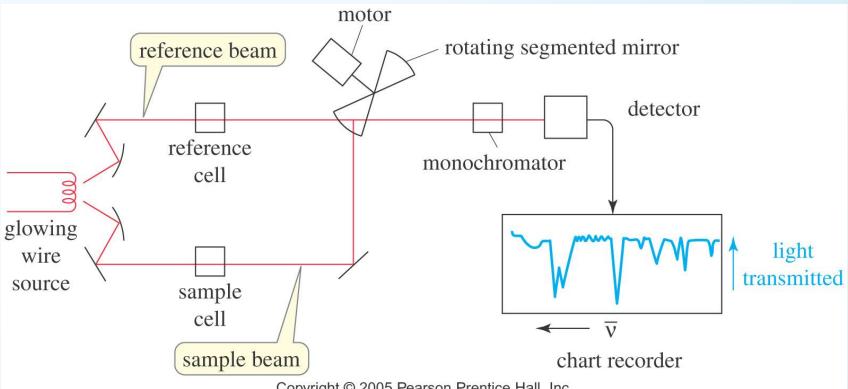
Stretching Frequencies

- Frequency decreases with increasing atomic mass.
- Frequency increases with increasing bond energy.


TABLE 12-1 Bor	nd Stretching Frequencies.	
Bond	Bond Energy [kJ (kcal)]	Stretching Frequency (cm ⁻¹)
$ \begin{array}{c c} C - H \\ C - D \\ C - C \end{array} \qquad heavier \\ atoms \end{array} $	Frequency decreases with increasing a 420 (100) <note are="" these="" trs=""> 420 (100) 350 (83)</note>	$\begin{array}{c c} atomic mass \\ 3000 \\ 2100 \\ 1200 \end{array} \overline{\nu} \text{ decreases} \end{array}$
C - C C = C $C \equiv C$	Frequency increases with bond of350 (83)611 (146)840 (200)\$trongerbond	$\begin{array}{c c} 1200 \\ 1660 \\ 2200 \end{array} \overline{\nu} \text{ increases} \end{array}$

Fingerprint of Molecule

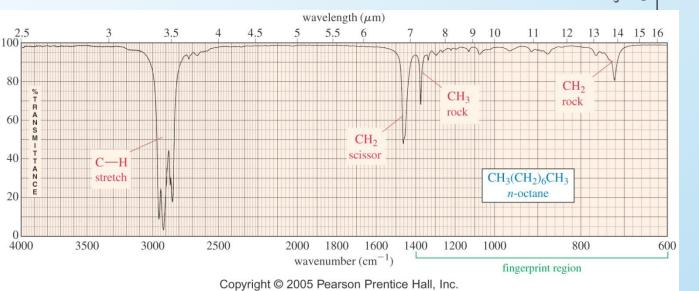
- Whole-molecule vibrations and bending vibrations are also quantized.
- No two molecules will give exactly the same IR spectrum (except enantiomers).
- Simple stretching: 1600-3500 cm⁻¹.
- Complex vibrations: 600-1400 cm⁻¹, called the "fingerprint region."


IR-Active and Inactive

• A polar bond is usually IR-active.

• A nonpolar bond in a symmetrical molecule will absorb weakly or not at all.

An Infrared Spectrometer


Copyright © 2005 Pearson Prentice Hall, Inc.

<u>Sample Preparation</u>: for solids – a pellet in KBr. For liquids between salt plates. KBr and NaCl are IR inactive. Sample is lost during analysis.

FT-IR Spectrometer

- Has better sensitivity.
- Less energy is needed from source.
- Completes a scan in 1-2 seconds.
- Takes several scans and averages them.
- Has a laser beam that keeps the instrument accurately calibrated.

The interferogram at the right displays the interference pattern and contains all of the spectrum information.

Key Concepts

- Know the basics of electromagnetic spectrum.
- Know how IR works
- Be able to predict the relationship between energy and bond length and atomic weight.