Mass Spectroscopy

Dr. Sapna Gupta

What is Mass Spectroscopy

- It is an analytical technique for measuring the mass-tocharge ratio (m/z) of ions in the gas phase.
- Mass spectrometry is our most valuable analytical tool for determining accurate molecular masses.
- Also can give information about structure.

The Mass Spectrum

- The plot is of mass of ions (m/z) (x-axis) versus the intensity of the signal (y-axis)
- Most abundant ion peak is base peak (100%)
- Other peaks listed as the % of the base peak
- Usually the last peak is the unfragmented radical cation, called the molecular ion peak (M+)

The Instrument

The mass spectrophotometer does the following:

- 1. Convert neutral atoms or molecules into a beam of positive (or rarely negative) ions.
- 2. Separate the ions on the basis of their mass-to-charge (m/z) ratio.
- 3. Measure the relative abundance of each ion.

Isotopes

	Element	Atomic weight	Isotope	Mass (amu)	Relative A bun dance
	hydrogen	1.0079	${}^{1}_{2-7}$	1.00783	100
Virtually all elements			² H	2.01410	0.016
common to organic compounds are	carbon	12.011	$^{12}_{13}$ C	12.0000 13.0034	100 1.11
mixtures of isotopes.	nitrogen	14.007	$^{14}_{15}N$	14.0031	100
All isotopes will	-		^{15}N	15.0001	0.38
show up on MS.	oxygen	15.999		15.9949	100
			¹⁸ 0	17.9992	0.20
	sulfur	32.066	³² S	31.9721	100
			³⁴ S	33.9679	4.40
	chlorine	35.453	³⁵ Cl	34.9689	100
			³⁷ Cl	36.9659	32.5
	bromine	79.904	⁷⁹ Br	78.9183	100
			⁸¹ Br	80.9163	98.0

M+2 and M+1 Peaks

- The most common elements giving rise to significant M + 2 peaks are chlorine and bromine.
- Chlorine in nature is 75.77% ³⁵Cl and 24.23% ³⁷Cl.
- A ratio of **M to M + 2 of approximately 3:1** indicates the presence of a single chlorine in a compound, as seen in the MS of chloroethane.

M+2 and M+1 Peaks

- Bromine in nature is 50.7% ⁷⁹Br and 49.3% ⁸¹Br.
- A ratio of M to M + 2 of approximately 1:1 indicates the presence of a single bromine atom in a compound, as seen in the MS of 1-bromopropane.

Fragmentation in MS

- The way molecular ions break down can produce characteristic fragments that help in identification
 - The spectrum as a "fingerprint" for comparison with known materials in analysis (used in forensics)
 - Fragmentation gives a cation and radical, only cations are detected by the MS
 - Positive charge goes to fragments that best can stabilize it

$$CH_3^+ < 1^\circ < 1^\circ$$
 allylic $< 2^\circ$ allylic $< 3^\circ$ allylic
 1° benzylic 2° benzylic 3° benzylic

• Rearrangements occur in the MS instrument but the mass is the same; so one has to look at the fragmentation patterns to find the actual structure.

$$\begin{bmatrix} CH_{3} \\ H_{3}C - C - CH_{3} \\ CH_{3} \end{bmatrix}^{+ \cdot} \xrightarrow{CH_{3}} H_{3}C - C^{+} + \cdot CH_{3} \\ H_{3}C - C^{+} + CH_{3} \\ CH_{3} \end{bmatrix}^{+ \cdot} \xrightarrow{CH_{3}} H_{3}C - C^{+} + CH_{3} \\ H_{3}C - CH_{3} \\ H_{3}$$

Interpretation of MS

- The only elements to give significant M + 2 peaks are Cl and Br.
 - If no large M + 2 peak is present, these elements are absent.
- Is the mass of the molecular ion odd or even?
- Nitrogen Rule: If a compound has
 - zero or an even number of nitrogen atoms, its molecular ion will have an even m/z value.
 - an odd number of nitrogen atoms, its molecular ion will have an odd m/z value.

Alkanes

Mass spectrum of Octane. Note that there is no methyl cation peak. The base peak is for 43 which is propyl cation $C_3H_7^+$

Alkanes

Mass spectrum of 2,2,4-trimethylpentane.

Note the base peak is 57 for t-butyl cation; the M+ is almost absent as everything has fragmented. The alkene cation is a result of rearrangement.

Alkanes

Mass spectrum of methylcyclopentane. The M+ peak is evident. Base peak is for butyl cation (4C), although the 5C fragment is also present.

@ Brooks/Cole, Cengage Learning

Alkenes

- Alkenes characteristically
 - show a strong molecular ion peak.
 - cleave readily to form resonance-stabilized allylic cations.

$$[CH_2 = CHCH_2 CH_2 CH_3]^+ \longrightarrow CH_2 = CHCH_2^+ + \cdot CH_2 CH_3$$

Alkynes

Alkynes typically

- show a strong molecular ion peak.
- cleave readily to form the resonance-stabilized propargyl cation or substituted propargyl cations.

3-Propynyl cation (Propargyl cation) $HC \equiv C^{+}CH_{2}^{+} \iff HC \equiv C=CH_{2}$

Alcohols

- The most common fragmentation patterns of alcohols is loss of H_2O to give a peak which corresponds to M-18.
- Another common pattern is loss of an alkyl group from the carbon bearing the OH to give a resonance-stabilized oxonium ion and an alkyl radical.

R"

R· + R'-Ç=0-H ← R'-Ç-0-H

@ Brooks/Cole, Cengage Learning

Problem

Propose structures for a compound that fits the following data: It is an alcohol with M⁺ = 88 and fragments at m/z = 73, m/z = 70, and m/z = 59

Answer: We must first decide on the formula of an alcohol that could undergo this type of fragmentation via MS. We know that an alcohol possesses an O atom (MW=16), so that leads us to the formula $C_5H_{12}O$ for an alcohol with M⁺ = 88, with a structure of:

One fragmentation peak at 70 is due to the loss of water, and alpha cleavage can result in m/z of 73 and 59.

Key Concepts

- Know how MS works
- Know about fragmentation patterns
- Know about base peak and molecular ion peak
- Be able to predict structure from fragmentation pattern and vice versa.