Substitution and Elimination Reactions 3- Review

Dr. Sapna Gupta

S_N^2 and S_N^1 Characteristics

	S_N^2	S_N^{-1}
Substrate	Primary or methyl	Tertiary
Nucleophile	Strong nucleophile	Weak nucleophile (may also be solvent)
Solvent	Polar aprotic solvent	Polar protic solvent, silver salts
Kinetics	[substrate][Nu]	[substrate]
Stereochemistry	Inversion	Racemic mixture
Rearrangement	No	Yes

E1 and E2 Characteristics

Condition	E1	E2
Mechanism	1 st order	2 nd order
Kinetics	[substrate]	[substrate] [base]
Substrate	3° - should form a stable carbocation	1º for better results
Bases	Does not need a strong base	Needs a strong base to cause elimination
Solvent	Polar	Nonpolar
Competes	With S _N ¹	With S _N ²
Stereochemistry	Regiospecific (gives Zaitsev's product as major product)	Stereospecific (needs the H and leaving groups to be antiperiplanar)

Substitution or Elimination?

	Substitution	Elimination
Nucleophile strength	Strong Nu but weak base – S_N^2	Strong Nu – E2
Nucleophile size	Small	Bulky
Substrate	Primary – S_N^2	Tertiary - S _N ¹ , E1 or E2
Temperature		Higher temp for more E

 $\frac{\text{E2 vs}}{3^{\circ}}$ S_N² 3° halide and bulky base promote E2

E1 vs S_N¹ High heat promotes E1

Types of Alkyl Halides

- 1° will almost always give S_N^2
- 2° primarily S_N² except when using a bulky base
- 3° S_N¹, E1 or E2. Strong base and high temperature promotes E

Substitution or Elimination?

Look at the conditions and then decide.

- Primary substrate
 - If the base is small, S_N^2 competes strongly because approach at carbon is unhindered.

$$\frac{\text{CH}_{3}\text{CH}_{2}\text{O}^{2} + \text{CH}_{3}\text{CH}_{2}\text{Br}}{\Delta} \xrightarrow{\frac{\text{C}_{2}\text{H}_{5}\text{OH}}{\Delta}} \frac{\text{CH}_{3}\text{CH}_{2}\text{O}\text{CH}_{2}\text{CH}_{3} + \text{CH}_{2}\text{=CH}_{2}}{\text{S}_{N}^{2} - 90\%} = \text{E2 } 10\%$$

- Secondary substrate
 - Approach to carbon is sterically hindered and E2 elimination is favored.